Deeper understanding of plant-endophyte interactions under abiotic stress would provide new insights into phytoprotection and phytoremediation enhancement. Many studies have investigated the positive role of plant-endophyte interactions in providing protection to the plant against pollutant stress through auxin (indole-3-acetic acid (IAA)) production. However, little is known about the impact of endophytic colonization patterns on plant stress response in relation to reactive oxygen species (ROS) and IAA levels. Moreover, the possible effect of pollutant phase on plant stress response is poorly understood. Here, we elucidated the impact of endophytic colonization patterns on plant stress response under airborne formaldehyde compared to formaldehyde-contaminated soil. ROS, tryptophan and IAA levels in the roots and shoots of endophyte-inoculated and non-inoculated plants in the presence and absence of formaldehyde were measured. Strain-specific quantitative polymerase chain reaction (qPCR) was used to investigate dynamics of endophyte colonization. Under the initial exposure to airborne formaldehyde, non-inoculated plants accumulated more tryptophan in the shoots (compared to the roots) to synthesize IAA. However, endophyte-inoculated plants behaved differently as they synthesized and accumulated more tryptophan in the roots and, hence, higher levels of IAA accumulation and exudation within roots which might act as a signaling molecule to selectively recruit B. cereus ERBP. Under continuous airborne formaldehyde stress, higher levels of ROS accumulation in the shoots pushed the plant to synthesize more tryptophan and IAA in the shoots (compared to the roots). Higher levels of IAA in the shoots might act as the potent driving force to relocalize B. cereus ERBP from roots to the shoots. In contrast, under formaldehyde-contaminated soil, B. cereus ERBP colonized root tissues without moving to the shoots since there was a sharp increase in ROS, tryptophan and IAA levels of the roots without any significant increase in the shoots. Pollutant phase affected endophytic colonization patterns and plant stress responses differently.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2017.02.016 | DOI Listing |
Front Microbiol
January 2025
School of Life Sciences, Hebei University, Baoding, China.
Introduction: Exploring the interactions between dark septate endophytes (DSE) in plant roots across diverse heavy metal habitats-considering host plants, site characteristics, and microbial communities-provides insights into the distribution patterns of DSE in metal-rich environments and their mechanisms for developing heavy metal resistance.
Methods: This study collected samples of three common plant species (, PA, , SV, and , AA) and their corresponding soil samples from three heavy metal-contaminated sites: Baiyang Lake, BY, Fengfeng mining area, FF, and Huangdao, HD. Utilizing high-throughput sequencing and physicochemical analysis methods, the biological and abiotic factors affecting DSE colonization and distribution in the roots were investigated.
Sci Rep
January 2025
School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
Bradyrhizobium sp. strain SUTN9-2 demonstrates cell enlargement, increased DNA content, and efficient nitrogen fixation in response to rice (Oryza sativa) extract. This response is attributed to the interaction between the plant's cationic antimicrobial peptides (CAMPs) and the Bradyrhizobium BacA-like transporter (BclA), similar to bacteroid in legume nodules.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2025
Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile.
The Argentine stem weevil (ASW), a major pest in ryegrass pastures, causes significant agricultural losses. Ryegrass can establish a symbiotic association with endophytic fungi, which supply chemical defenses, including peramine. This symbiosis helps protect ryegrass by providing peramine, which acts as a primary defense.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2025
Food and Wine Research Institute, Eszterházy Károly Catholic University, Leányka utca 8/G, H-3300 Eger, Hungary.
The best known spp. are important pathogens of small-grain cereals and/or endophytes of diverse monocot hosts. This study is the first report of isolated from asymptomatic grapevine tissues.
View Article and Find Full Text PDFFront Microbiol
January 2025
Toxicology and Mycotoxin Research Unit, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States.
-a mycotoxigenic fungus and food safety threat-coinhabits maize kernels with . This protective endophyte produces secondary metabolites of interest, pyrrocidines A and B, which inhibit the growth of and specifically block fumonisin biosynthesis. Previous transcriptomic analyses found (FVEG_00314), a gene adjacent to the fumonisin biosynthetic gene cluster, to be induced over 4,000-fold in response to pyrrocidine challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!