Genetic Variants in the ELOVL5 but not ELOVL2 Gene Associated with Polyunsaturated Fatty Acids in Han Chinese Breast Milk.

Biomed Environ Sci

Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, Jilin, China.

Published: January 2017

AI Article Synopsis

  • The study investigated how variations in the ELOVL gene affect the levels of polyunsaturated fatty acids (PUFAs) in breast milk from 209 healthy Han Chinese mothers.
  • Carriers of certain genetic variants (SNPs rs2397142 and rs9357760) showed higher levels of key fatty acids like linoleic acid and DHA, while another variant (rs209512) was linked to lower levels of docosatetraenoic acid.
  • Overall, the genetic variations in the ELOVL5 gene accounted for a small portion of the variability in breast milk fatty acid levels, indicating their role in PUFA metabolism.

Article Abstract

The present study was designed to examine the contributions of the fatty acid elongase (ELOVL) gene polymorphisms to the levels of polyunsaturated fatty acids (PUFAs) in breast milk. Two hundred and nine healthy Han Chinese mothers were included in the study. Carriers of minor alleles of SNPs (rs2397142 and rs9357760) in ELOVL5 were associated with higher levels of linoleic acid (LA), dihomo-γ-linolenic acid (DGLA), arachidonic acid (AA), docosatetraenoic acid (DTA), docosahexenoic acid (DHA), while in rs209512 of ELOVL5 the carriers of minor alleles had lower levels of DTA compared to major homozygote alleles (P ranged from 0.004-0.046), and genetically explained variability ranged from 3.2% for eicosapentaenoic acid (EPA) to 6.0% for LA. Our findings demonstrated that common variation in ELOVL5 gene encoding rate-limiting enzymes in the metabolism of PUFAs contribute to the PUFAs in breast milk.

Download full-text PDF

Source
http://dx.doi.org/10.3967/bes2017.008DOI Listing

Publication Analysis

Top Keywords

breast milk
12
polyunsaturated fatty
8
fatty acids
8
han chinese
8
pufas breast
8
carriers minor
8
minor alleles
8
acid
7
genetic variants
4
elovl5
4

Similar Publications

We hypothesized that improving the fat globule structure of infant formulae based on the milk fat globule membrane (MFGM) would regulate metabolites and metabolic pathways, making it more similar to the metabolic properties of human milk. Therefore, we prepared infant formulae with different fat globule structures, including two model infant formulae (F1: fat globules surrounded by MFGM; F2: fat globules surrounded by protein) and one commercial infant formulae containing MFGM, and compared their metabolic differences with those of human milk. The number of differential metabolites between each sample and human milk reached 60 (F1), 132 (F2) and 126 (IF1).

View Article and Find Full Text PDF

Context: Human milk provides nutrients for newborns, while breastfeeding is preferred, formula feeding can also provide necessary nutrition and after weaning, individuals of all ages frequently drink bovine milk. Bovine and human milk contain lactose as a carbohydrate source, and infant milk formulas are also designed the same. However, lactose is fermentable by Streptococcus mutans, much like sucrose but to a lower extent.

View Article and Find Full Text PDF

Brucella spp. is the bacterium responsible for brucellosis, a zoonotic infection that affects humans. This disease poses significant health challenges and contributes to poverty, particularly in developing countries.

View Article and Find Full Text PDF

Background: The human gut microbiota develops in concordance with its host over a lifetime, resulting in age-related shifts in community structure and metabolic function. Little is known about whether these changes impact the community's response to microbiome-targeted therapeutics. Providing critical information on this subject, faecal microbiomes of subjects from six age groups, spanning from infancy to 70-year-old adults (n = six per age group) were harvested.

View Article and Find Full Text PDF

Background/objectives: This study aimed to determine the percentage and duration of neutralizing antibodies against the Omicron variant in human milk after vaccination against SARS-CoV-2, considering the three different vaccine technologies approved in Brazil.

Methods: A cross-sectional study was conducted with lactating women who received the complete vaccination cycle with available vaccines (AstraZeneca, Pfizer, CoronaVac, and Janssen). The participants resided in Rio de Janeiro, and samples were collected from April to October 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!