Up until now montane cloud forest (MCF) in Taiwan has only been mapped for selected areas of vegetation plots. This paper presents the first comprehensive map of MCF distribution for the entire island. For its creation, a Random Forest model was trained with vegetation plots from the National Vegetation Database of Taiwan that were classified as "MCF" or "non-MCF". This model predicted the distribution of MCF from a raster data set of parameters derived from a digital elevation model (DEM), Landsat channels and texture measures derived from them as well as ground fog frequency data derived from the Moderate Resolution Imaging Spectroradiometer. While the DEM parameters and Landsat data predicted much of the cloud forest's location, local deviations in the altitudinal distribution of MCF linked to the monsoonal influence as well as the Massenerhebung effect (causing MCF in atypically low altitudes) were only captured once fog frequency data was included. Therefore, our study suggests that ground fog data are most useful for accurately mapping MCF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5330468 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172663 | PLOS |
Curr Issues Mol Biol
November 2024
Department of Physiology, International Medical School (IMS), Management and Science University, Shah Alam 40150, Selangor, Malaysia.
Coronavirus disease 2019 (COVID-19) has been a global pandemic affecting millions of people's lives, which has led to 'post-COVID-19 fatigue'. Alarmingly, severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) not only infects the lungs but also influences the heart and brain. Endothelial cell dysfunction and hypercoagulation, which we know occur with this infection, lead to thrombo-inflammation that can manifest as many myriad cardio-cerebrovascular disorders, such as brain fog, fatigue, cognitive dysfunction, etc.
View Article and Find Full Text PDFFront Robot AI
December 2024
School of Electrical and Electronic Engineering, University of Sheffield, Sheffield, United Kingdom.
This paper proposes a solution to the challenging task of autonomously landing Unmanned Aerial Vehicles (UAVs). An onboard computer vision module integrates the vision system with the ground control communication and video server connection. The vision platform performs feature extraction using the Speeded Up Robust Features (SURF), followed by fast Structured Forests edge detection and then smoothing with a Kalman filter for accurate runway sidelines prediction.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Laboratory of Advanced Navigation Technology, Information and Navigation College, Air Force Engineering University, Xi'an 710049, China.
Microwaves exhibit superior performance in free-space transmission compared to optical waves, primarily due to their ability to penetrate fog and experience lower losses in the Earth's atmosphere. Based on microwave-optical entanglement prepared by nano-cavity electro-opto-mechanic converters, we propose a scheme of a quantum positioning system using the distance-based positioning method. Principles of microwave-optical entanglement preparation and our QPS scheme are introduced in detail.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
Clouds and fogs, consisting of tiny water droplets formed by the condensation of water in supersaturated air, are vital in atmospheric chemistry, as they facilitate multiphase reactions. While measuring high-altitude cloud is challenging, fog as ground-level clouds offer a unique opportunity for direct observation. In this study, we explored radiation fogs in the North China Plain using an advanced aerosol-fog sampling system to measure the chemical and physical properties of both inactivated interstitial aerosols and activated fog droplet residues.
View Article and Find Full Text PDFLight detection and ranging (LiDAR) utilizes eye-safe laser beams to perceive the world in three-dimensional (3D) detail, offering machines and computers with an accurate representation of their surroundings. This technology is widely employed in metrology, environmental monitoring, archaeology, and robotics. However, the presence of scattering media in the optical path, such as fog, dust, or translucent plates, will cause light scattering and occlude direct observation of the scene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!