Background: Reductions in whole brain and grey matter volumes are robust features of schizophrenia, yet their etiological influences are unclear.
Methods: We investigated the association between the genetic and environmental risk for schizophrenia and brain volumes. Whole brain, grey matter and white matter volumes were established from structural MRIs from twins varying in their zygosity and concordance for schizophrenia. Hippocampal volumes were measured manually. We conducted between-group testing and full genetic modelling.
Results: We included 168 twins in our study. Whole brain, grey matter, white matter and right hippocampal volumes were smaller in twins with schizophrenia. Twin correlations were larger for whole brain, grey matter and white matter volumes in monozygotic than dizygotic twins and were significantly heritable, whereas hippocampal volume was the most environmentally sensitive. There was a significant phenotypic correlation between schizophrenia and reductions in all the brain volumes except for that of the left hippocampus. For whole brain, grey matter and the right hippocampus the etiological links with schizophrenia were principally associated with the shared familial environment. Lower birth weight and perinatal hypoxia were both associated with lower whole brain volume and with lower white matter and grey matter volumes, respectively.
Limitations: Scan data were collected across 2 sites, and some groups were modest in size.
Conclusion: Whole brain, grey matter and right hippocampal volume reductions are linked to schizophrenia through correlated familial risk (i.e., the shared familial environment). The degree of influence of etiological factors varies between brain structures, leading to the possibility of a neuroanatomically specific etiological imprint.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5373701 | PMC |
http://dx.doi.org/10.1503/jpn.140277 | DOI Listing |
Alzheimers Dement (Amst)
January 2025
Background: This study explores the impact of sleep disturbances on gray matter structural covariance networks (SCNs) across the Alzheimer's disease (AD) continuum.
Methods: Amyloid-negative participants served as controls, whereas amyloid positive (A+) individuals were categorized into six groups based on cognitive status and sleep quality. SCNs for the default mode network (DMN), salience network (SN), and executive control network (ECN) were derived from T1-weighted magnetic resonance images.
Brain Commun
January 2025
Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome 00179, Italy.
Alzheimer's disease is a disabling neurodegenerative disorder for which no effective treatment currently exists. To predict the diagnosis of Alzheimer's disease could be crucial for patients' outcome, but current Alzheimer's disease biomarkers are invasive, time consuming or expensive. Thus, developing MRI-based computational methods for Alzheimer's disease early diagnosis would be essential to narrow down the phenotypic measures predictive of cognitive decline.
View Article and Find Full Text PDFBiol Psychiatry Cogn Neurosci Neuroimaging
January 2025
Department of Psychiatry, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA.
Background: The understanding of the neural correlates of borderline personality disorder (BPD) is limited, but suggests alterations in limbic structures play a role in adult BPD. The developmental course of structural neural differences in BPD is unknown. Whether there is specificity for structural alterations in BPD compared with other psychiatric presentations, such as major depressive disorder (MDD), remains unexplored.
View Article and Find Full Text PDFThis paper is based on a presentation made at the 9th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures in April 2024. Status Epilepticus (SE) is a neurological emergency involving prolonged seizures that disrupt brain function and may cause severe, long-term neurological damage. Developmental and Epileptic Encephalopathies (DEEs), a group of severe genetic disorders with early-onset epilepsy, often exhibit SE episodes that compound their inherent cognitive and developmental challenges.
View Article and Find Full Text PDFJ Brachial Plex Peripher Nerve Inj
January 2025
School of Health Sciences, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
GABA (γ-aminobutyric acid) is the major inhibitory neurotransmitter in the brain. In response to injury within the central nervous system, GABA promotes cortical plasticity and represents a potential pharmacological target to improve functional recovery. However, it is unclear how GABA changes in the brain after traumatic brachial plexus injuries (tBPIs) which represents the rationale for this pilot study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!