Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report a green, template-free, and general one-pot method of endogenous growth of free-standing boehmite (AlOOH) nanosheets on a 3D-network 60 μm-Al-fiber felt through water-only hydrothermal oxidation reaction between Al metal and HO (2Al + 4HO → 2AlOOH + 3H). Content and morphology of AlOOH nanosheets can be finely tuned by adjusting the hydrothermal oxidation time length and temperature. Palladium is highly dispersed on such AlOOH endogenously formed on Al-fiber felt via incipient wetness impregnation method and as-obtained Pd/AlOOH/Al-fiber catalysts are checked in the CO coupling to dimethyl oxalate (DMO) reaction. Interestingly, Pd dispersion is very sensitive to the thickness (26-68 nm) of AlOOH nanosheet, and therefore the conversion shows strong AlOOH-nanosheet-thickness dependence whereas the intrinsic activity (TOF) is AlOOH-nanosheet-thickness independence. The most promising structured catalyst is the one using a microfibrous-structured composite with the thinnest AlOOH nanosheet (26 nm) to support a small amount of Pd of only 0.26 wt %. This catalyst, with high thermal-conductivity and satisfying structural robustness, delivers 67% CO conversion and 96% DMO selectivity at 150 °C using a feed of CHONO/CO/N (1/1.4/7.6, vol) and a gas hourly space velocity of 3000 L kg h, and particularly, is very stable for at least 150 h without deactivation sign.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b00889 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!