A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microfibrous-Structured Pd/AlOOH/Al-Fiber for CO Coupling to Dimethyl Oxalate: Effect of Morphology of AlOOH Nanosheet Endogenously Grown on Al-Fiber. | LitMetric

Microfibrous-Structured Pd/AlOOH/Al-Fiber for CO Coupling to Dimethyl Oxalate: Effect of Morphology of AlOOH Nanosheet Endogenously Grown on Al-Fiber.

ACS Appl Mater Interfaces

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

Published: March 2017

We report a green, template-free, and general one-pot method of endogenous growth of free-standing boehmite (AlOOH) nanosheets on a 3D-network 60 μm-Al-fiber felt through water-only hydrothermal oxidation reaction between Al metal and HO (2Al + 4HO → 2AlOOH + 3H). Content and morphology of AlOOH nanosheets can be finely tuned by adjusting the hydrothermal oxidation time length and temperature. Palladium is highly dispersed on such AlOOH endogenously formed on Al-fiber felt via incipient wetness impregnation method and as-obtained Pd/AlOOH/Al-fiber catalysts are checked in the CO coupling to dimethyl oxalate (DMO) reaction. Interestingly, Pd dispersion is very sensitive to the thickness (26-68 nm) of AlOOH nanosheet, and therefore the conversion shows strong AlOOH-nanosheet-thickness dependence whereas the intrinsic activity (TOF) is AlOOH-nanosheet-thickness independence. The most promising structured catalyst is the one using a microfibrous-structured composite with the thinnest AlOOH nanosheet (26 nm) to support a small amount of Pd of only 0.26 wt %. This catalyst, with high thermal-conductivity and satisfying structural robustness, delivers 67% CO conversion and 96% DMO selectivity at 150 °C using a feed of CHONO/CO/N (1/1.4/7.6, vol) and a gas hourly space velocity of 3000 L kg h, and particularly, is very stable for at least 150 h without deactivation sign.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b00889DOI Listing

Publication Analysis

Top Keywords

alooh nanosheet
12
coupling dimethyl
8
dimethyl oxalate
8
morphology alooh
8
alooh nanosheets
8
hydrothermal oxidation
8
alooh
6
microfibrous-structured pd/alooh/al-fiber
4
pd/alooh/al-fiber coupling
4
oxalate morphology
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!