A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Short-term effects of air quality and thermal stress on non-accidental morbidity-a multivariate meta-analysis comparing indices to single measures. | LitMetric

Short-term effects of air quality and thermal stress on non-accidental morbidity-a multivariate meta-analysis comparing indices to single measures.

Int J Biometeorol

ERIN-Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology (LIST), 5, avenue des Hauts-Fourneaux, Esch/Alzette, 4362, Luxembourg.

Published: January 2018

Air quality and thermal stress lead to increased morbidity and mortality. Studies on morbidity and the combined impact of air pollution and thermal stress are still rare. To analyse the correlations between air quality, thermal stress and morbidity, we used a two-stage meta-analysis approach, consisting of a Poisson regression model combined with distributed lag non-linear models (DLNMs) and a meta-analysis investigating whether latitude or the number of inhabitants significantly influence the correlations. We used air pollution, meteorological and hospital admission data from 28 administrative districts along a north-south gradient in western Germany from 2001 to 2011. We compared the performance of the single measure particulate matter (PM10) and air temperature to air quality indices (MPI and CAQI) and the biometeorological index UTCI. Based on the Akaike information criterion (AIC), it can be shown that using air quality indices instead of single measures increases the model strength. However, using the UTCI in the model does not give additional information compared to mean air temperature. Interaction between the 3-day average of air quality (max PM10, max CAQI and max MPI) and meteorology (mean air temperature and mean UTCI) did not improve the models. Using the mean air temperature, we found immediate effects of heat stress (RR 1.0013, 95% CI: 0.9983-1.0043) and by 3 days delayed effects of cold stress (RR: 1.0184, 95% CI: 1.0117-1.0252). The results for air quality differ between both air quality indices and PM10. CAQI and MPI show a delayed impact on morbidity with a maximum RR after 2 days (MPI 1.0058, 95% CI: 1.0013-1.0102; CAQI 1.0068, 95% CI: 1.0030-1.0107). Latitude was identified as a significant meta-variable, whereas the number of inhabitants was not significant in the model.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00484-017-1326-0DOI Listing

Publication Analysis

Top Keywords

air quality
32
thermal stress
16
air temperature
16
air
14
quality thermal
12
quality indices
12
quality
8
indices single
8
single measures
8
air pollution
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!