The effect of repeated bonding on the shear bond strength of different resin cements to enamel and dentin.

J Adv Prosthodont

Department of Prosthodontics, University of Kırıkkale, Faculty of Dentistry, Kırıkkale, Turkey.

Published: February 2017

Purpose: Cementation failures of restorations are frequently observed in clinical practice. The purpose of this study is to compare the effect of initial and repeated bonding on the bond strengths of different resin cements to enamel and dentin.

Materials And Methods: Ninety human maxillary central incisors were bisected longitudinally. The 180 tooth halves were divided into 2 groups (n = 90) for enamel and dentin bonding. The enamel and dentin groups were further divided into 3 groups (n = 30) for different resin cement types. Composite resin (Filtek Ultimate) cylinders (3 × 3 mm) were prepared and luted to enamel and dentin using Variolink II (Group V), RelyX ARC (Group R), or Panavia F 2.0 (Group P) resin cement. After 24 hours, initial shear bond strengths of the resin cements to enamel and dentin were measured. Using new cylinders, the specimens were de-bonded and re-bonded twice to measure the first and the second bond strengths to enamel and dentin. Failure modes and bonding interfaces were examined. Data were statistically analyzed.

Results: Initial and repeated bond strengths to enamel were similar for all the groups. The first (15.3 ± 2.2 MPa) and second (10.4 ± 2.2 MPa) bond strengths to dentin were significantly higher in Group V (<.0001). Second bond strengths of dentin groups were significantly lower than initial and first bond strengths to dentin (<.0001).

Conclusion: All resin cements have similar initial and repeated bond strengths to enamel. Variolink II has the highest first and second bond strength to dentin. Bond strength to dentin decreases after the first re-bonding for all resin cements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5321590PMC
http://dx.doi.org/10.4047/jap.2017.9.1.57DOI Listing

Publication Analysis

Top Keywords

enamel dentin
24
bond strengths
20
resin cements
12
cements enamel
12
repeated bonding
8
shear bond
8
enamel
8
initial repeated
8
strengths resin
8
divided groups
8

Similar Publications

Although the modulus of elasticity of the human periodontal ligament (E) values used in dentistry widely ranged from 0.01 to 175 MPa, the exact E value has not been determined. This study aimed to verify whether and how E values affect the stress distribution over the tooth and periodontium structures, and to determine the appropriate E range.

View Article and Find Full Text PDF

Aims: This pilot study aimed to compare the marginal adaptation of composite resin at the tooth-restoration interface, before and after radiation.

Subjects And Methods: Fifteen extracted premolars were divided into 2 experimental groups (based on the timing of irradiation) and 1 control group of 5 teeth each. In Group I (control group), teeth were restored but not exposed to radiation at any stage, Group II: teeth were irradiated before cavity preparation and restoration, and Group III: after cavity preparation and restoration employing selective etch technique, teeth were exposed to radiation.

View Article and Find Full Text PDF

Mild hypophosphatasia (HPP) can be difficult to distinguish from other bone disorders in the absence of typical symptoms such as the premature loss of primary teeth. Therefore, this study aimed to analyze the crystallinity of hydroxyapatite (HAp) and the three-dimensional structure of collagen in HPP teeth at the molecular level and to search for new biomarkers of HPP. Raman spectroscopy was used to investigate the molecular structure, composition, and mechanical properties of primary teeth from healthy individuals and patients with HPP.

View Article and Find Full Text PDF

Patients with diabetes mellitus (DM) have an increased risk of tooth decay caused by alterations in their tooth development and their oral environment, as well as a tendency to present with pulp infection due to compromised immune response. The present study analyzed the characteristic alterations in tooth development under DM conditions using incisors from type 2 diabetic mouse model (T2DM mice). In micro-CT analyses, T2DM mice showed delayed dentin and enamel formation.

View Article and Find Full Text PDF

The finite element method (FEM) is an advanced numerical technique that can be applied in orthodontics to study tooth movements, stresses, and deformations that occur during orthodontic treatment. It is also useful for simulating and visualizing the biomechanical behavior of teeth, tissues, and orthodontic appliances in various clinical scenarios. The objective of this research was to analyze the mechanical behavior of teeth, tissues, and orthodontic appliances in various clinical scenarios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!