A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biomechanical Assessment of Stabilization of Simulated Type II Odontoid Fracture with Case Study. | LitMetric

Study Design: Researchers created a proper type II dens fracture (DF) and quantified a novel current posterior fixation technique with spacers at C1-C2. A clinical case study supplements this biomechanical analysis.

Purpose: Researchers explored their hypothesis that spacers combined with posterior instrumentation (PI) reduce range of motion significantly, possibly leading to better fusion outcomes.

Overview Of Literature: Literature shows that the atlantoaxial joint is unique in allowing segmental rotary motion, enabling head turning. With no intervertebral discs at these joints, multiple ligaments bind the axis to the skull base and to the atlas; an intact odontoid (dens) enhances stability. The most common traumatic injury at these strong ligaments is a type II odontoid fracture.

Methods: Each of seven specimens (C0-C3) was tested on a custom-built six-degrees-of-freedom spine simulator with constructs of intact state, type II DF, C1-C2 PI, PI with joint capsulotomy (PIJC), PI with spacers (PIS) at C1-C2, and spacers alone (SA). A bending moment of 2.0 Nm (1.5°/sec) was applied in flexion-extension (FE), lateral bending (LB), and axial rotation (AR). One-way analysis of variance with repeated measures was performed.

Results: DF increased motion to 320%, 429%, and 120% versus intact (FE, LB, and AR, respectively). PI significantly reduced motion to 41%, 21%, and 8%. PIJC showed negligible changes from PI. PIS reduced motion to 16%, 14%, and 3%. SA decreased motion to 64%, 24%, and 54%. Reduced motion facilitated solid fusion in an 89-year-old female patient within 1 year.

Conclusions: Type II odontoid fractures can lead to acute or chronic instability. Current fixation techniques use C1-C2 PI or an anterior dens screw. Addition of spacers alongside PI led to increased biomechanical rigidity over intact motion and may offer an alternative to established surgical fixation techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5326723PMC
http://dx.doi.org/10.4184/asj.2017.11.1.15DOI Listing

Publication Analysis

Top Keywords

type odontoid
12
reduced motion
12
case study
8
motion
8
fixation techniques
8
type
5
spacers
5
biomechanical assessment
4
assessment stabilization
4
stabilization simulated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!