The aim of this work was focused on the development of carboxymethyl xylan (CMX) formulations with functional properties to produce edible films. Beechwood Xylan was firstly derivatized into carboxymethyl xylan and thereafter was blended with Agar (Ag), Ammonium zirconium carbonate (AZC) and linoleic acid (La) to produce CMX:Ag, CMX:AZC, CMX:Ag:La films. Mechanical, barrier, optical and thermal properties of the produced films and their antimicrobial activity against food pathogenic bacteria were evaluated. The obtained films were transparent and yellowish. Agar and AZC improved the tensile strength at break of the control CMX film from 4.79 to 27.67 and 20.95 MPa respectively, and the CMX:AZC film exhibited the greatest elastic modulus. Barrier properties of the films decreased when any of the components was incorporated into the CMX and all blended films were thermally more stable than control. The CMX:Ag:La film revealed a good antimicrobial activity against and .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5305696 | PMC |
http://dx.doi.org/10.1007/s13197-016-2389-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!