The enteric nervous system comprises neurons and a relatively homogeneous population of glial cells, which differ considerably from those found in other parts of the peripheral nervous system and resemble more closely astrocytes from the central nervous system. It provides a simple model system for the study of neuron/glial interactions and glial cell development. In this study the proliferation rates of purified populations of enteric glia and Schwann cells and their response to several mitogens in vitro were compared. Enteric glial cells divided at a much higher rate than Schwann cells in both serum-containing and serum-free media. This difference in their basal proliferation rates was the major difference seen between the two cell types. Both cell populations were stimulated to divide by fibroblast growth factor and glial growth factor but not by epidermal growth factor. Enteric glial cells and Schwann cells proliferated at a greater rate on a basement membrane-like extracellular matrix produced by corneal endothelial cells, laminin, and fibronectin than on poly-L-lysine-coated glass coverslips. The magnitude of stimulation was greater for Schwann cells, presumably due to their lower basal division rates. Like Schwann cells, enteric glial cells were stimulated to divide by two agents which elevate intracellular cAMP, cholera toxin, and dibutyryl cAMP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0012-1606(87)90493-3 | DOI Listing |
Br J Cancer
January 2025
Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
Background: Pancreatic ductal adenocarcinoma (PDAC) exhibits a high frequency of neural invasion (NI). Schwann cells (SCs) have been shown to be reprogrammed to facilitate cancer cell migration and invasion into nerves. Since extracellular vesicles (EVs) affect the tumour microenvironment and promote metastasis, the present study analysed the involvement of EVs from pancreatic cancer cells and their microenvironment in altering SC phenotype as part of the early events in the process of NI.
View Article and Find Full Text PDFToxicon
January 2025
National Council of Research (CNR), Institute of Biochemistry and Cell Biology, 00015 Monterotondo (RM), Italy.
Botulinum neurotoxin type A (BoNT/A) has expanded its therapeutic uses beyond neuromuscular disorders to include treatments for various pain syndromes and neurological conditions. Originally recognized for blocking acetylcholine release at neuromuscular junctions, BoNT/A's effects extend to both peripheral and central nervous systems. Its ability to undergo retrograde transport allows BoNT/A to modulate synaptic transmission and reduce pain centrally, influencing neurotransmitter systems beyond muscle control.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120 Halle (Saale), Germany.
Nimodipine is the current gold standard in the treatment of subarachnoid hemorrhage, as it is the only known calcium channel blocker that has been proven to improve neurological outcomes. In addition, nimodipine exhibits neuroprotective properties in vitro under various stress conditions. Furthermore, clinical studies have demonstrated a neuroprotective effect of nimodipine after vestibular schwannoma surgery.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Neuroscience and Mental Health Innovation Institute, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK.
Deletion and duplication in the human 16p11.2 chromosomal region are closely linked to neurodevelopmental disorders, specifically autism spectrum disorder. Data from neuroimaging studies suggest white matter microstructure aberrations across these conditions.
View Article and Find Full Text PDFBiomedicines
January 2025
Second Department of Internal Medicine, Division of Nephrology, Kansai Medical University, Hirakata 573-1010, Japan.
: Charcot-Marie-Tooth (CMT) disease is an inherited peripheral neuropathy primarily involving motor and sensory neurons. Mutations in INF2, an actin assembly factor, cause two diseases: peripheral neuropathy CMT-DIE (MIM614455) and/or focal segmental glomerulosclerosis (FSGS). These two phenotypes arise from the progressive degeneration affecting podocytes and Schwann cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!