Inhibition of neuronal mitochondrial complex I or lysosomal glucocerebrosidase is associated with increased dopamine and serotonin turnover.

Neurochem Int

ICH Centre for Translational Omics, Genetic and Genomic Medicine Development Bio & Cancer Programme, UCL GOS Institute of Child Health and Chemical Pathology, Great Ormond Street Hospital, London, WC1N 3JH, UK. Electronic address:

Published: October 2017

Parkinson's disease (PD) is a neurodegenerative disorder caused by loss of dopaminergic and serotoninergic signalling. A number of pathogenic mechanisms have been implicated including loss of mitochondrial function at the level of complex I, and lysosomal metabolism at the level of lysosomal glucocerebrosidase (GBA1). In order to investigate further the potential involvement of complex I and GBA1 in PD, we assessed the impact of loss of respective enzyme activities upon dopamine and serotonin turnover. Using SH-SY5Y cells, complex I deficiency was modelled by using rotenone whilst GBA1 deficiency was modelled by the use of conduritol B epoxide (CBE). Dopamine, its principal metabolites, and the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the extracellular medium were quantified by HPLC. Inhibition of complex I significantly increased extracellular concentrations of 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-HIAA. Comparable results were observed with CBE. These results suggest increased monoamine oxidase activity and provide evidence for involvement of impaired complex I or GBA1 activity in the dopamine/serotonin deficiency seen in PD. Use of extracellular media may also permit relatively rapid assessment of dopamine/serotonin metabolism and permit screening of novel therapeutic agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2017.02.013DOI Listing

Publication Analysis

Top Keywords

complex lysosomal
8
lysosomal glucocerebrosidase
8
dopamine serotonin
8
serotonin turnover
8
complex gba1
8
deficiency modelled
8
complex
6
inhibition neuronal
4
neuronal mitochondrial
4
mitochondrial complex
4

Similar Publications

Sandhoff disease (SD) is a progressive neurodegenerative lysosomal storage disorder characterized by GM2 ganglioside accumulation as a result of mutations in the gene, which encodes the β-subunit of the enzyme β-hexosaminidase. Lysosomal storage of GM2 triggers inflammation in the CNS and periphery. The NLRP3 inflammasome is an important coordinator of pro-inflammatory responses, and we have investigated its regulation in murine SD.

View Article and Find Full Text PDF

Chemically engineered antibodies for autophagy-based receptor degradation.

Nat Chem Biol

January 2025

Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Cell surface receptor-targeted protein degraders hold promise for drug discovery. However, their application is restricted because of the complexity of creating bifunctional degraders and the reliance on specific lysosome-shuttling receptors or E3 ubiquitin ligases. To address these limitations, we developed an autophagy-based plasma membrane protein degradation platform, which we term AUTABs (autophagy-inducing antibodies).

View Article and Find Full Text PDF

Deacetylated SNAP47 recruits HOPS to facilitate autophagosome-lysosome fusion independent of STX17.

Nat Commun

January 2025

School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Autophagy, a conserved catabolic process implicated in a diverse array of human diseases, requires efficient fusion between autophagosomes and lysosomes to function effectively. Recently, SNAP47 has been identified as a key component of the dual-purpose SNARE complex mediating autophagosome-lysosome fusion in both bulk and selective autophagy. However, the spatiotemporal regulatory mechanisms of this SNARE complex remain unknown.

View Article and Find Full Text PDF

Autophagy is a fundamental cellular process critical for maintaining neuronal health, particularly in the context of neurodegenerative diseases such as Alzheimer's disease (AD). This review explores the intricate role of the SNARE complex in the fusion of autophagosomes with lysosomes, a crucial step in autophagic flux. Disruptions in this fusion process, often resulting from aberrant SNARE complex function or impaired lysosomal acidification, contribute to the pathological accumulation of autophagosomes and lysosomes observed in AD.

View Article and Find Full Text PDF

The maintenance of skeletal muscle quality involves various signal pathways that interact with each other. Under normal physiological conditions, these intersecting signal pathways regulate and coordinate the hypertrophy and atrophy of skeletal muscles, balancing the protein synthesis and degradation of muscle. When the total rate of protein synthesis exceeds that of protein degradation, the muscle gradually becomes enlarged, while when the total rate of protein synthesis is lower than that of protein degradation, the muscle shrinks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!