Waveguide backscatter affects the resonance shape and quality factor (Q) of ring resonators. Our simple analytical expression predicts how waveguide backscatter spoils the Q and results in resonance splitting. We show that the effects of backscatter depend only on the finesse of the resonator and when it can safely be ignored. Finally, we describe the effects of backscatter in low-loss cavities using simple complex Lorentzian functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.25.003242 | DOI Listing |
In this work, a specially designed multilayer indium tin oxide (ITO) mesh structure metasurface was proposed as a microwave absorber, achieving both excellent angle-insensitive broadband absorption and high shielding effectiveness (SE). It features gradually changing surface resistance ( ), to expand the absorption bandwidth while maintaining high SE. Also, a folded square ring metasurface was designed to effectively suppress surface wave grating lobes, as well as to reduce the unit size of the metasurface and thus the absorber.
View Article and Find Full Text PDFFiber Bragg grating (FBG) accelerometers are extensively utilized across various industries. For a high-performance FBG accelerometer interrogator, achieving low cost, wide range, multi-channel capability, high precision, and high-speed demodulation is critical. This paper proposes a chip-level wavelength demodulation method for FBG accelerometers utilizing a cascaded micro-ring resonator (MRR) array.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China.
The flextensional transducer (FT) is a typical low-frequency transmitting transducer that is capable of high-power operation due to its capacity for displacement amplification. This article uses the structural configuration of the class IV FT as the basis for designing a ring transducer, which is a circular structure comprising a multitude of class IV flextensional structures as well as circular acoustic radiation structures. The flextensional structure drives the circular acoustic radiation structure, which in turn generates sound waves at low frequencies.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Synchrotron Soleil, L'Orme des Merisiers, St. Aubin BP48, F-91192 Gif sur Yvette, France.
(1,2)--Aminoindanol and (1,2)--aminoindanol, denoted as -AI and -AI, are diastereoisomer aromatic aminoalcohols differing by the presence of a weak intramolecular hydrogen bond in -AI, which is absent in -AI. They also differ by the number of conformers under supersonic jet conditions, one for -AI and two for -AI. One-photon and resonance-enhanced two-photon photoelectron circular dichroism (PECD) spectra are obtained for the two molecules.
View Article and Find Full Text PDFJ Mol Model
January 2025
School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Haidian District, Ding No.11 Xueyuan Road, Beijing, 100083, People's Republic of China.
Context: Understanding the structural characteristics of coal at the molecular level is fundamental for its effective utilization. To explore the molecular structure characteristic, the long-flame coal from Daliuta (DLT), coking coal from Yaoqiao (YQ), and anthracite from Taixi (TX) were investigated using various techniques such as elemental analysis, Fourier transform infrared spectroscopy, solid-state C nuclear magnetic resonance spectroscopy, and X-ray photoelectron spectroscopy. Based on the structural parameters, the coal molecular model was constructed and optimized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!