We demonstrate design, fabrication, and characterization of two-dimensional photonic crystal (PhC) waveguides on a suspended silicon rich nitride (SRN) platform for applications at telecom wavelengths. Simulation results suggest that a 210 nm photonic band gap can be achieved in such PhC structures. We also developed a fabrication process to realize suspended PhC waveguides with a transmission bandwidth of 20 nm for a W1 PhC waveguide and over 70 nm for a W0.7 PhC waveguide. Using the Fabry-Pérot oscillations of the transmission spectrum we estimated a group index of over 110 for W1 PhC waveguides. For a W1 waveguide we estimated a propagation loss of 53 dB/cm for a group index of 37 and for a W0.7 waveguide the lowest propagation was 4.6 dB/cm.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.25.003214DOI Listing

Publication Analysis

Top Keywords

phc waveguides
12
photonic crystal
8
silicon rich
8
rich nitride
8
phc waveguide
8
phc
6
waveguides
4
crystal waveguides
4
waveguides silicon
4
nitride platform
4

Similar Publications

Bending loss is one of the serious problems for constructing nanophotonic integrated circuits. Recently, many works reported that valley photonic crystals (VPhCs) enable significantly high transmission via 120-degree sharp bends. However, it is unclear whether the high bend-transmission results directly from the valley-photonic effects, which are based on the breaking of inversion symmetry.

View Article and Find Full Text PDF

Optical resonators made of 2D photonic crystal (PhC) slabs provide efficient ways to manipulate light at the nanoscale through small group-velocity modes with low radiation losses. The resonant modes in periodic photonic lattices are predominantly limited by nonleaky guided modes at the boundary of the Brillouin zone below the light cone. Here, we propose a mechanism for ultra-high Q resonators based on the bound states in the continuum (BICs) above the light cone that have zero-group velocity (ZGV) at an arbitrary Bloch wavevector.

View Article and Find Full Text PDF

The theory of band topology has inspired the discovery of various topologically protected states in the regime of photonics. It has led to the development of topological photonic devices with robust property and versatile functionalities, like unidirectional waveguides, compact power splitters, high-Q resonators, and robust lasers. These devices mainly rely on the on-chip photonic crystal (PhC) in Si or III-V compound materials with a fairly large bandgap.

View Article and Find Full Text PDF

In this paper, quasi-Tamm plasmon polaritons (TPPs)/Fano resonance systems based on metal-dielectric-metal (MDM) waveguides are proposed. TPPs are surface electromagnetic modes formed at the interface between a metal and a one-dimensional dielectric photonic crystal (PhC). A metal plasmonic Bragg reflector (PBR) in a MDM waveguide is equivalent to a dielectric PhC, which is realized by periodic MDM waveguide width modulation and leads to the photonic bandgap.

View Article and Find Full Text PDF

Lasing Emission from Soft Photonic Crystals for Pressure and Position Sensing.

Nanomaterials (Basel)

November 2023

Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.

In this report, we introduce a 1D photonic crystal (PhC) nanocavity with waveguide-like strain amplifiers within a soft polydimethylsiloxane substrate, presenting it as a potential candidate for highly sensitive pressure and position optical sensors. Due to its substantial optical wavelength response to uniform pressure, laser emission from this nanocavity enables the detection of a minimum applied uniform pressure of 1.6‱ in experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!