Importance: Magnesium supplements are widely marketed for prophylaxis of nocturnal leg cramps (NLC) despite no evidence of significant benefit.
Objective: To determine whether magnesium oxide is better than placebo for NLC prophylaxis.
Design, Setting, And Participants: A randomized, double-blind, placebo-controlled clinical trial of 2 weeks eligibility screening followed by 4 weeks of treatment was conducted in northern Israel, from February to October 2013. An intention-to-treat data analysis was performed from March 22, 2014, to April 17, 2016. We used a volunteer sample of community-dwelling individuals experiencing NLC, 21 years or older, with 4 or more documented episodes of NLC during 2 weeks of screening.
Interventions: Capsules containing either magnesium oxide or a similar-looking placebo to be taken orally, once daily at bedtime for a period of 4 weeks.
Main Outcomes And Measures: The primary outcome was the difference in the mean number of NLC per week between the screening and treatment phases. Secondary outcomes included severity and duration of NLC, quality of life, and quality of sleep.
Results: Of the 166 volunteers, 72 (43%) were excluded, of whom 15 declined to participate and 57 did not meet the inclusion criteria. Of the 94 individuals (39% male; mean [SD] age, 64.9 [11.1] years) randomly assigned to magnesium oxide (48) or placebo (46), 6 did not complete the study protocol (3 in each group). Mean (SD) change of NLC was -3.41 (4.05) (from 7.84 [5.68] to 4.44 [5.66]) and -3.03 (4.53) (from 8.51 [5.20] to 5.48 [4.93]) per week in the magnesium oxide and placebo groups, respectively, a difference between groups of 0.38 (0.48) NLC per week (P = .67 in an intention-to-treat analysis). There were no between-group differences in the severity and duration of NLC, quality of life, or quality of sleep.
Conclusions And Relevance: Oral magnesium oxide was not superior to placebo for older adults experiencing NLC. The decrease in the mean number of NLC per week, from the screening to the treatment phase in both groups, is probably a placebo effect that may explain the wide use of magnesium for NLC.
Trial Registration: clinicaltrials.gov Identifier: NCT01709968.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5818780 | PMC |
http://dx.doi.org/10.1001/jamainternmed.2016.9261 | DOI Listing |
Nutrients
December 2024
Bionos Biotech SL, LabAnalysis Life Science, Biopolo Hospital La Fe, 46026 Valencia, Spain.
Background/objectives: Magnesium (Mg)-based food supplements contribute to the maintenance of adequate levels of Mg that are essential for overall health and well-being. The aim of this double-blind, randomized, cross-over clinical study was to assess the plasma Mg levels in volunteers following the oral administration of a magnesium-based nutraceutical ingredient, MAGSHAPE microcapsules (Mg-MS), in comparison to other commonly used magnesium sources, including the following: Mg Oxide (MgO), Mg Citrate (Mg-C), and Mg bisglycinate (Mg-BG).
Methods: A total of 40 healthy women and men were put on a low-Mg diet for 7 days, and after 8 h of fasting, a blood sample was taken from a digital puncture before (0 h) and 1 h, 4 h, and 6 h after the oral intake of each product.
Materials (Basel)
December 2024
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
The erosion caused by high-temperature calcium-magnesium-alumina-silicate (CMAS) has emerged as a critical impediment to the advancement of thermal barrier coating (TBC). In this study, a series of high-entropy rare earth zirconates, (LaSmDyErGd)(ZrCe)O ( = 0, 0.2, 0.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
LiMnO, a significant cathode material for lithium-ion batteries, has garnered considerable attention due to its low cost and environmental friendliness. However, its widespread application is constrained by its rapid capacity degradation and short cycle life at elevated temperatures. To enhance the electrochemical performance of LiMnO, we employed a liquid-phase co-precipitation and calcination method to incorporate Cr into the LiMnO cathode material, successfully synthesizing a series of LiCrMnO (x = 0~0.
View Article and Find Full Text PDFLangmuir
January 2025
Perm State University, 15 Bukirev strasse, Perm 614068, Russia.
Copper(II) oxide nanoparticles (CuO NPs) are used in different industries and agriculture, thus leading to their release to the environment, which raises concerns about their ecotoxicity and biosafety. The main toxicity mechanism of nanometals is oxidative stress as a result of the formation of reactive oxygen species caused by metal ions released from nanoparticles. Bacterial biofilms are more resistant to physical and chemical factors than are planktonic cells due to the extracellular polymeric matrix (EPM), which performs a protective function.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States.
Polymer/ceramic nanocomposites integrated the advantages of both polymers and ceramics for a wide range of biomedical applications, such as bone tissue repair. Here, we reported triphasic poly(lactic--glycolic acid) (PLGA, LA/GA = 90:10) nanocomposites with improved dispersion of hydroxyapatite (HA) and magnesium oxide (MgO) nanoparticles using a process that integrated the benefits of ultrasonic energy and dual asymmetric centrifugal mixing. We characterized the microstructure and composition of the nanocomposites and evaluated the effects of the HA/MgO ratios on degradation behavior and cell-material interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!