Adsorption of Ellipsoidal Particles at Liquid-Liquid Interfaces.

Langmuir

Department of Chemical Engineering, KU Leuven , B-3001 Leuven, Belgium.

Published: March 2017

The adsorption of particles at liquid-liquid interfaces is of great scientific and technological importance. In particular, for nonspherical particles, the capillary forces that drive adsorption vary with position and orientation, and complex adsorption pathways have been predicted by simulations. On the basis of the latter, it has been suggested that the timescales of adsorption are determined by a balance between capillary and viscous forces. However, several recent experimental results point out the role of contact line pinning in the adsorption of particles to interfaces and even suggest that the adsorption dynamics and pathways are completely determined by the latter, with the timescales of adsorption being determined solely by particle characteristics. In the present work, the adsorption trajectories of model ellipsoidal particles are investigated experimentally using cryo-SEM and by monitoring the altitudinal orientation angle using high-speed confocal microscopy. By varying the viscosity and the viscosity jump across the interfaces, we specifically interrogate the role of viscous forces.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.6b03534DOI Listing

Publication Analysis

Top Keywords

adsorption
9
ellipsoidal particles
8
particles liquid-liquid
8
liquid-liquid interfaces
8
interfaces adsorption
8
adsorption particles
8
timescales adsorption
8
adsorption determined
8
viscous forces
8
particles
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!