Introduction: Previous studies have suggested cerebrospinal fluid (CSF) levels of neurofilament light (NFL) and total tau are elevated in Huntington's disease (HD) and may be used as markers of disease stage. Biomarkers are needed due to the slow disease progression and the limitations of clinical assessment. This study aims to validate the role of NFL and tau as biomarkers in HD.

Methods: CSF was obtained from a cohort of HD patients and premanifest HD-mutation carriers. Unified Huntington's Disease Rating Scale (UHDRS) testing was performed on all subjects at the time of sampling. NFL and tau concentrations were determined by ELISA. Spearman correlations were calculated with R version 3.2.3.

Results: 11 premanifest HD and 12 manifest HD subjects were enrolled. NFL and tau levels were correlated. NFL showed strong correlations with all items included in the clinical assessment (for example the total functional capacity (TFC) (r = - 0.70 p < 0.01) and total motor score (TMS) (r = 0.83p < 0.01). Tau showed slightly weaker correlations (eg. TMS (r = 0.67 p < 0.01); TFC (r = - 0.59 p < 0.01)). NFL was significantly correlated with 5-year probability of disease onset, whereas tau was not.

Conclusion: This study strengthens the case for NFL as a useful biomarker of disease stage. NFL was strongly correlated to all evaluated items in the UHDRS assessment. Tau also has a potential for use as a biomarker but correlations to clinical tests are weaker in this study. We suggest that NFL and possibly tau be used in clinical drug trials as biomarkers of disease progression that are potentially influenced by future disease-modifying therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5328385PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172762PLOS

Publication Analysis

Top Keywords

nfl tau
16
tau
9
nfl
9
huntington's disease
8
disease stage
8
disease progression
8
clinical assessment
8
nfl correlated
8
disease
7
tau neurofilament
4

Similar Publications

Impaired renal function can influence biomarker levels through mechanisms involving blood-brain barrier integrity and clearance pathways; however, the impact of variations within normal renal function remains unclear. The main aim of this study was to determine whether adjustment for the specific level of renal function is necessary when renal function remains within physiological levels. We studied n = 183 patients (NID n = 122; other neurological diseases n = 39; somatoform controls n = 22) who underwent lumbar puncture at University Hospital Frankfurt.

View Article and Find Full Text PDF

Prion diseases, including Creutzfeldt-Jakob disease (CJD), are deadly neurodegenerative disorders characterized by the buildup of abnormal prion proteins in the brain. This accumulation disrupts neuronal functions, leading to the rapid onset of psychiatric symptoms, ataxia, and cognitive decline. The urgency of timely diagnosis for effective treatment necessitates the identification of strongly correlated biomarkers in bodily fluids, which makes our research crucial.

View Article and Find Full Text PDF

Early-onset Alzheimer's disease constitutes ∼5-10% of Alzheimer's disease. Its clinical characteristics and biomarker profiles are not well documented. To compare the characteristics covering clinical, neuropsychological and biomarker profiles between patients with early- and late-onset Alzheimer's disease, we enrolled 203 patients (late-onset Alzheimer's disease = 99; early-onset Alzheimer's disease = 104) from a Chinese hospital-based cohort, the Shanghai Memory Study.

View Article and Find Full Text PDF

Fluid biomarkers play important roles in many aspects of neurodegenerative diseases, such as Huntington's disease (HD). However, a main question relates to how well levels of biomarkers measured in CSF are correlated with those measured in peripheral fluids, such as blood or saliva. In this study, we quantified levels of four neurodegenerative disease-related proteins, neurofilament light (NfL), total tau (t-tau), glial fibrillary acidic protein (GFAP) and YKL-40 in matched CSF, plasma and saliva samples from Huntingtin (HTT) gene-positive individuals (n = 21) using electrochemiluminescence assays.

View Article and Find Full Text PDF

Background: For clinical implementation of Alzheimer's disease (AD) blood-based biomarkers (BBMs), knowledge of short-term variability, is crucial to ensure safe and correct biomarker interpretation, i.e., to capture changes or treatment effects that lie beyond that of expected short-term variability and considered clinically relevant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!