Revealing the crystal structure of lead halide perovskite nanocrystals is essential for the optimization of stability of these emerging materials in applications such as solar cells, photodetectors, and light-emitting devices. We use magneto-photoluminescence spectroscopy of individual perovskite CsPbBr nanocrystals as a unique tool to determine their crystal structure, which imprints distinct signatures in the excitonic sublevels of charge complexes at low temperatures. At zero magnetic field, the identification of two classes of photoluminescence spectra, displaying either two or three sublevels in their exciton fine structure, shows evidence for the existence of two crystalline structures, namely tetragonal D and orthorhombic D phases. Magnetic field shifts, splitting, and coupling of the sublevels provide a determination of the diamagnetic coefficient and valuable information on the exciton g-factor and its anisotropic character. Moreover, this spectroscopic study reveals the optical properties of charged excitons and allows the extraction of the electron and hole g-factors for perovskite systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.7b00064DOI Listing

Publication Analysis

Top Keywords

exciton fine
8
fine structure
8
lead halide
8
halide perovskite
8
perovskite nanocrystals
8
crystal structure
8
magnetic field
8
neutral charged
4
charged exciton
4
structure
4

Similar Publications

Continuous-wave perovskite polariton lasers.

Sci Adv

January 2025

State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China.

Solution-processed semiconductor lasers are next-generation light sources for large-scale, bio-compatible and integrated photonics. However, overcoming their performance-cost trade-off to rival III-V laser functionalities is a long-standing challenge. Here, we demonstrate room-temperature continuous-wave perovskite polariton lasers exhibiting remarkably low thresholds of ~0.

View Article and Find Full Text PDF

Research on perovskite light-emitting diodes (PeLEDs) has primarily focused on modulating crystal growth to achieve smaller grain sizes and defect passivation using organic additives. However, challenges remain in controlling the intermolecular interactions between these organic additives and perovskite precursor ions for precise modulation of crystal growth. In this study, we synthesize two triphenylphosphine oxide (TPPO)-based multidentate additives: bidentate hexane-1,6-diyl-bis(oxy-4-triphenylphosphine oxide) (2-TPPO) and tetradentate pentaerythrityl-tetrakis(oxy-4-triphenylphosphine oxide) (4-TPPO).

View Article and Find Full Text PDF

Modulating Acceptor Phase Leads to 19.59% Efficiency Organic Solar Cells.

Adv Sci (Weinh)

December 2024

Center on Nanoenergy Research, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning, 530004, China.

Article Synopsis
  • Nonfullerene acceptors are essential for boosting organic solar cell performance, but issues like poor morphology and low photon-to-electron conversion hinder efficiency.
  • A new dual additive approach using benzoic anhydride and 1-chloronaphthalene improves the aggregation of these acceptors, resulting in better device performance.
  • This method creates optimal structures that enhance charge collection, achieving power conversion efficiencies of 18.27% and 19.59% for specific device combinations, indicating potential advancements in organic photovoltaic technologies.
View Article and Find Full Text PDF

Thermal Modulation of Exciton Recombination for High-Temperature Ultra-Long Afterglow.

Angew Chem Int Ed Engl

December 2024

Department Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materi obiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China.

Developing smart materials with tunable high-temperature afterglow (HTA) luminescence remains a formidable challenge. This study presents a metal-free doping system using boric acid as matrix and polycyclic aromatic hydrocarbons as dopants. This composition achieves dynamically tunable afterglow combining a bright blue HTA lasting for over ten seconds even at 150 °C and an ultra-long yellow room-temperature phosphorescence below 110 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!