Download full-text PDF

Source
http://dx.doi.org/10.1002/ajh.24703DOI Listing

Publication Analysis

Top Keywords

mutations runx1
4
runx1 families
4
families inherited
4
inherited thrombocytopenia
4
mutations
1
families
1
inherited
1
thrombocytopenia
1

Similar Publications

NOTCH3 Mutation Causes Glymphatic Impairment and Promotes Brain Senescence in CADASIL.

CNS Neurosci Ther

January 2025

Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.

Aims: The aim of this study is to investigate the role of glymphatic function of cerebral autosomal dominant arteriopathy, subcortical infarcts, and leukoencephalopathy (CADASIL), the most common monogenic small vessel disease caused by NOTCH3 mutation, and to explore potential therapeutic strategies to improve glymphatic function.

Methods: We assessed glymphatic influx and efflux function in CADASIL mouse models (Notch3) and correlated these findings with brain atrophy in CADASIL patients. We also investigated the underlying mechanisms of glymphatic impairment, focusing the expression of AQP4 in astrocytic endfeet.

View Article and Find Full Text PDF

Acute lymphoblastic leukaemia is the most common childhood malignancy that remains a leading cause of death in childhood. It may be characterised by multiple known recurrent genetic aberrations that inform prognosis, the most common being hyperdiploidy and t(12;21) . We aimed to assess the applicability of a new imaging flow cytometry methodology that incorporates cell morphology, immunophenotype, and fluorescence in situ hybridisation (FISH) to identify aneuploidy of chromosomes 4 and 21 and the translocation .

View Article and Find Full Text PDF

How to combine multiple tools for the genetic diagnosis work-up of pediatric B-cell acute lymphoblastic leukemia.

Ann Hematol

January 2025

Hematology Service, Experimental Hematology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.

This study investigated the importance of comprehensive genetic diagnosis in pediatric B-cell acute lymphoblastic leukemia (B-ALL). We analyzed 175 B-ALL employing karyotyping, FISH, MLPA, targeted next-generation sequencing (t-NGS), and Optical Genome Mapping (OGM). This approach achieved an 83% classification rate, identifying 17 distinct genetic subtypes.

View Article and Find Full Text PDF

Acquired factor XIII deficiency in myeloid neoplasms: case series and review of literature.

Hematol Oncol Stem Cell Ther

January 2025

Adult Hematology, Stem Cell Transplant and Cellular Therapy Section, Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.

Acquired factor XIII (FXIII) deficiency is a rare disorder that could be associated with autoimmune and malignant disorders with a high risk of bleeding. In acute leukemias, acquired FXIII deficiency has been reported and replacement of FXIII helped to control significant bleeding. Here, we report four cases of myeloid neoplasms to have acquired FXIII deficiency with interesting concomitant RUNX1 mutation in the molecular background of two patients.

View Article and Find Full Text PDF

Familial Platelet Disorder with associated Myeloid Malignancy (FPDMM, FPD/AML, -FPD), caused by monoallelic deleterious germline variants, is characterized by bleeding diathesis and predisposition for hematologic malignancies, particularly myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Clinical data on FPDMM-associated AML (FPDMM-AML) are limited, complicating evidence-based clinical decision-making. Here, we present retrospective genetic and clinical data of the largest cohort of FPDMM patients reported to date.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!