Hepatocellular carcinoma (HCC) has one of the poorest survival rates among cancers. Using multi-regional sampling of nine resected HCC with different aetiologies, here we construct phylogenetic relationships of these sectors, showing diverse levels of genetic sharing, spanning early to late diversification. Unlike the variegated pattern found in colorectal cancers, a large proportion of HCC display a clear isolation-by-distance pattern where spatially closer sectors are genetically more similar. Two resected intra-hepatic metastases showed genetic divergence occurring before and after primary tumour diversification, respectively. Metastatic tumours had much higher variability than their primary tumours, suggesting that intra-hepatic metastasis is accompanied by rapid diversification at the distant location. The presence of co-existing mutations offers the possibility of drug repositioning for HCC treatment. Taken together, these insights into intra-tumour heterogeneity allow for a comprehensive understanding of the evolutionary trajectories of HCC and suggest novel avenues for personalized therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333358 | PMC |
http://dx.doi.org/10.1038/ncomms14565 | DOI Listing |
Bioinformatics
March 2025
Department of Biosystems Science and Engineering, ETH Zurich, Basel 4056, Switzerland.
Motivation: Copy number alterations are driving forces of tumour development and the emergence of intra-tumour heterogeneity. A comprehensive picture of these genomic aberrations is therefore essential for the development of personalised and precise cancer diagnostics and therapies. Single-cell sequencing offers the highest resolution for copy number profiling down to the level of individual cells.
View Article and Find Full Text PDFVirchows Arch
January 2025
Department of Pathology, Unidade Local de Saúde São João, Porto, Portugal.
This case report describes a rare case of bi-phenotypic gastric cancer with two distinct, but clonally related, histological components. The first component, associated with Epstein-Barr virus (EBV) infection, exhibited the morphological features of gastric carcinoma with lymphoid stroma, suggesting that EBV, as an effective immunogenic factor, may trigger a prominent immune response within the tumour microenvironment. The second component, which was EBV-negative, displayed tubular/papillary morphology and features of increased biological aggressiveness, such as high-grade areas and lymphatic invasion.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, Paris, France.
Patient-derived xenografts (PDX) of breast cancer, obtained from the engraftment of tumour samples into immunodeficient mice, are the most effective preclinical models for studying the biology of human breast cancer and for the evaluation of new anti-cancer treatments. Notably, breast cancer PDX preserve the phenotypic and molecular characteristics of the donor tumours and reproduce the diversity of breast cancer. This preservation of breast cancer biology involves a number of different aspects, including tumour architecture and morphology, patterns of genomic alterations and gene expression, mutational status, and intra-tumour heterogeneity.
View Article and Find Full Text PDFPancreatic neuroendocrine tumours (PanNETs) have intra-tumour heterogeneity, notably regarding the Ki-67 index, which is a major prognostic factor. The temporal evolution of PanNET biology is poorly known. We aimed to study the prognostic impact of the temporal evolution of Ki-67 and other molecular markers (MEN1, ATRX/DAXX and PDX1/ARX) in PanNETs.
View Article and Find Full Text PDFFEBS Lett
March 2025
Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, UK.
Cancer-associated fibroblasts (CAFs) are the dominant nonmalignant component of the tumour microenvironment (TME). CAFs demonstrate a high level of inter- and intra-tumour heterogeneity in solid tumours, though the drivers of CAF subpopulations are not fully understood. Here, we demonstrate that non-small cell lung cancer (NSCLC) patient-derived CAFs upregulate the secretion of inflammatory cytokines (IL6, LIF, IL33, GM-CSF, IL1ra) and chemokines (CCL2, CCL3, CCL4, CCL20, CXCL8, CXCL9, CXCL10, CXCL11) in response to in vitro co-culture with anti-CD3/anti-CD28-stimulated peripheral blood mononuclear cells (PBMCs) via IFNγ and TNFα.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!