Metamaterial bricks and quantization of meta-surfaces.

Nat Commun

INTERACT Lab, School of Engineering and Informatics, University of Sussex, Brighton BN1 9RH, UK.

Published: February 2017

Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units-which we call metamaterial bricks-each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333366PMC
http://dx.doi.org/10.1038/ncomms14608DOI Listing

Publication Analysis

Top Keywords

acoustic
7
metamaterial bricks
4
bricks quantization
4
meta-surfaces
4
quantization meta-surfaces
4
meta-surfaces controlling
4
controlling acoustic
4
acoustic fields
4
fields crucial
4
crucial diverse
4

Similar Publications

As the depth of coal mining in China continues to increase, the fracturing of coal rock masses has an increasingly complex impact on the surrounding rock roadways. The majority of the mine's roadways run through coal rock masses with hard roofs and soft bottoms, which typically exhibit complex dynamic behaviour. To further research the mechanical behaviour and fracture evolution of coal rock masses under hard-roof and soft-floor conditions, the study is based on the majority of working faces in a mine, which have hard roofs and soft floors.

View Article and Find Full Text PDF

Beta oscillations predict the envelope sharpness in a rhythmic beat sequence.

Sci Rep

January 2025

RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, Oslo, 0373, Norway.

Periodic sensory inputs entrain oscillatory brain activity, reflecting a neural mechanism that might be fundamental to temporal prediction and perception. Most environmental rhythms and patterns in human behavior, such as walking, dancing, and speech do not, however, display strict isochrony but are instead quasi-periodic. Research has shown that neural tracking of speech is driven by modulations of the amplitude envelope, especially via sharp acoustic edges, which serve as prominent temporal landmarks.

View Article and Find Full Text PDF

Characterization of LIPUS Parameters Suitable for Hip Bone Fracture.

Ultrasound Med Biol

January 2025

Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR, China. Electronic address:

Objective: To investigate the effects of ultrasound treatment on the healing of hip bone fractures using frequencies of 0.5 MHz and 1.5 MHz with constant intensity (30 mW/cm) at the fractured site.

View Article and Find Full Text PDF

Integrating visual features has been proven effective for deep learning-based speech quality enhancement, particularly in highly noisy environments. However, these models may suffer from redundant information, resulting in performance deterioration when the signal-to-noise ratio (SNR) is relatively high. Real-world noisy scenarios typically exhibit widely varying noise levels.

View Article and Find Full Text PDF

Dual oxygen supply system of carbon dot-loaded microbubbles with acoustic cavitation for enhanced sonodynamic therapy in diabetic wound healing.

Biomaterials

January 2025

Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, No. 66 Dongxin Avenue, Binjiang District, Hangzhou, 310053, PR China. Electronic address:

Diabetic wounds present significant treatment challenges due to their complex microenvironment, marked by persistent inflammation from bacterial infections, hypoxia caused by diabetic microangiopathy, and biofilm colonization. Sonodynamic therapy (SDT) offers potential for treating such wounds by targeting deep tissues with antibacterial effects, but its efficacy is limited by hypoxic conditions and biofilm barriers. To overcome these obstacles, we developed a novel approach using oxygen-carrying microbubbles loaded with Mn-doped carbon dots (MnCDs@OMBs) to enhance SDT and disrupt biofilms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!