Dihydromyricetin Reduces TGF-β Via P53 Activation-dependent Mechanism in Hepatocellular Carcinoma HepG2 Cells.

Protein Pept Lett

Laboratory of Hepatobiliary Surgery, Guangdong Medical University; Zhanjiang Key Laboratory of Hepatobiliary Disease and Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001. China.

Published: October 2017

Natural antineoplastic drug development is crucial to treatment of clinical oncology. Dihydromyricetin, a bioactive flavonoid compound was extracted from the stems and leaves of Ampelopsis grossedentata. It exhibited anticancer activity and induced apoptosis in human hepatocellular carcinoma cells according to our previous studies. In this study, we demonstrated that DHM could significantly inhibit proliferation and induce apoptosis in HepG2 cells with MTT and Flow Cytometry methods. It is very interesting that we found DHM could regulate TGF-β signal pathway and which has a crosstalk with P53, Smad3 and P-Smad2/3 proteins. Meanwhile, we confirmed that DHM showed antitumor activity by regulating the activation of the p53-dependent pathways (MDM2, P-MDM2, BAX and Bcl-2). These findings defined and supported a novel mechanism that DHM could induce cell apoptosis by reducing TGF-β via p53 signal pathway in HepG2 cells.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0929866524666170223143113DOI Listing

Publication Analysis

Top Keywords

hepg2 cells
12
tgf-β p53
8
hepatocellular carcinoma
8
signal pathway
8
dihydromyricetin reduces
4
reduces tgf-β
4
p53 activation-dependent
4
activation-dependent mechanism
4
mechanism hepatocellular
4
carcinoma hepg2
4

Similar Publications

Quantitative Analysis of Hepatitis D Virus Using gRNA-Sensitive Semiconducting Polymer Dots.

Anal Chem

January 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronics Science and Engineering, Jilin University, No. 2699 Qianjin Street, Changchun, Jilin 130012, P. R. China.

Hepatitis D virus (HDV) significantly influences the progression of liver diseases. Through clinical observations and database analyses, it has been established that patients coinfected with HDV and hepatitis B virus (HBV) experience accelerated progression toward cirrhosis, hepatocellular carcinoma (HCC), and liver failure compared to those infected solely with HBV. A higher viral load correlates with increased replicative activity, enhanced infectivity, and more severe disease manifestations.

View Article and Find Full Text PDF

Flavonoids and Kavalactones Isolated from Seeds of Alpinia katsumadai Hayata. and Their Cytotoxic Activities.

Chem Biodivers

January 2025

Guizhou Medical University, School of Pharmaceutical Sciences, University Town, Gui'an New District, 550025, Guiyang, CHINA.

An unrevealed dihydroflavone-monoterpene conjugate (1), two unrevealed kavalactones (2-3, including one with an uncommon side chain), and thirteen previously identified compounds (4-16) were extracted from Alpinia katsumadai Hayata. seeds. The two-dimension structures of the new compounds were authenticated utilizing HRESIMS as well as NMR spectral analysis, while their absolute chiral configurations were ascertained either by correlating the experimental and simulated values of electronic circular dichroism (ECD) patterns or conducting X-ray diffraction experiments.

View Article and Find Full Text PDF

This study investigated the ameliorative effects of Yinchen lipid-lowering tea (YCLLT) on Non-alcoholic fatty liver disease (NAFLD), the specific mechanism involved was also studied. We modeled hepatocellular steatosis with HepG2 cells and intervened with different concentrations of YCLLT-containing serum. Lipid deposition was assessed by oil red O staining and AdipoR1 expression was analyzed by Western blot.

View Article and Find Full Text PDF

The current chemotherapy treatments for liver cancer have shown limited effectiveness. Therefore, there is an urgent need to develop new drugs to combat this disease more effectively. This study reports synthesis of cobalt oxide nanoparticles coated with glucose, and conjugated with Ellagic acid.

View Article and Find Full Text PDF

[Berberine regulates glucose and lipid metabolism via clock-controlled genes to ameliorate insulin resistance of hepatocytes].

Zhongguo Zhong Yao Za Zhi

December 2024

Jiangxi Province Key Laboratory of Traditional Chinese Medicine Etiopathogenisis & Research Center for Differentiation and Development of Traditional Chinese Medicine Basic Theory, Jiangxi University of Chinese Medicine Nanchang 330004,China.

This study aims to investigate the mechanism of berberine in regulating the metabolism network via clock-controlled genes represented by brain and muscle arnt-like 1(BMAL1) to ameliorate insulin resistance(IR) of hepatocytes in vitro. The HepG2 cell model of dexamethasone-induced IR(IR-HepG2) was established and treated with 5, 10, and 20 μmol·L~(-1) berberine, respectively, for 24 h. The glucose oxidase method and cell counting kit-8(CCK-8) assay were employed to measure extracellular glucose concentration and cell viability, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!