Objective: Nerve Growth Factor (NGF) is a neurotrophic factor known to play a critical role in growth, survival, differentiation and neuroprotection of peripheral sensory and sympathetic neurons, as well as brain neurons. We have recently reported that nasal administration of high-pressure isotonic physiological saline solution (HPpSIS) enhances the level of NGF and the expression of NGF receptors in neurons of the olfactory bulbs and forebrain cholinergic neurons of laboratory animals. In the present study, we sought to determine whether the same treatment affects the levels of NGF within the brain tumor tissue.
Patients And Methods: This study was conducted on eight adult patients, 4 males and 4 females with malignant anterior cranial fossa tumor. Before surgery, four subjects, two males and two females received nasal administration of HPpSIS for ten consecutive days.
Results: The levels of NGF in surgical removed peripheral tumor brain samples of patients treated with nasal HPpSIS administration are more elevated compared to the levels of NGF in peripheral brain tissues of HPpSIS untreated patients.
Conclusions: We observed that nasal administration of HPpSIS enhances not only the basal brain NGF levels and the expression of NGF receptors but also the tumor suppressor protein p73. The possible functional significance of these observations will be described and discussed.
Download full-text PDF |
Source |
---|
Crit Care Explor
January 2025
Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, MD.
Intermediate care (IC) is prevalent nationwide, but little is known about how to best organize this level of care. Using a 99-item cross-sectional survey assessing four domains (hospital and physical IC features, provider and nurse staffing, monitoring, and interventions/services), we describe the organizational heterogeneity of IC within a five-hospital healthcare system. Surveys were completed by nurse managers from 12 (86%) of 14 IC settings.
View Article and Find Full Text PDFImmunohorizons
January 2025
Department of Surgery, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada.
The global dissemination of SARS-CoV-2 led to a worldwide pandemic in March 2020. Even after the official downgrading of the COVID-19 pandemic, infection with SARS-CoV-2 variants continues. The rapid development and deployment of SARS-CoV-2 vaccines helped to mitigate the pandemic to a great extent.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
The dissemination of tumor cells with ensuing metastasis is responsible for most cancer-related deaths. Cancer vaccines may, by inducing tumor-specific effector T cells, offer a strategy to eliminate metastasizing tumor cells. However, several obstacles remain in the development of effective cancer vaccines, including the identification of adjuvants that enhance the evolvement and efficacy of tumor-specific T cells.
View Article and Find Full Text PDFZool Res
January 2025
School of Basic Medicine, Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases, Qingdao University, Qingdao, Shandong, 266071, China. E-mail:
Iron is the most abundant transition metal in the brain and is essential for brain development and neuronal function; however, its abnormal accumulation is also implicated in various neurological disorders. The olfactory bulb (OB), an early target in neurodegenerative diseases, acts as a gateway for environmental toxins and contains diverse neuronal populations with distinct roles. This study explored the cell-specific vulnerability to iron in the OB using a mouse model of intranasal administration of ferric ammonium citrate (FAC).
View Article and Find Full Text PDFComb Chem High Throughput Screen
January 2025
Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
Aim And Objective: Magnoliae Flos (Chinese name: Xin-Yi) and Xanthii Fructus (Chinese name: Cang-Er-Zi) are Chinese herbal medicines and have been used to treat allergic rhinitis (AR). However, the therapeutic effect, active ingredients, and probable processes of a compound of Magnoliae Flos and Xanthii Fructus in the form of essential oils (CMFXFEO) in treating AR have not been reported. This study aims to determine the efficacy of the CMFXFEO on ovalbumin (OVA)-induced AR in a rat model and to use network pharmacology and molecular docking to reveal the hub genes, biological functions, and signaling pathways of CMFXFEO against AR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!