It remains unclear how perturbations in cardiomyocyte sarcomere function alter postnatal heart development. We utilized murine models that allowed manipulation of cardiac myosin-binding protein C (MYBPC3) expression at critical stages of cardiac ontogeny to study the response of the postnatal heart to disrupted sarcomere function. We discovered that the hyperplastic to hypertrophic transition phase of mammalian heart development was altered in mice lacking MYBPC3 and this was the critical period for subsequent development of cardiomyopathy. Specifically, MYBPC3-null hearts developed evidence of increased cardiomyocyte endoreplication, which was accompanied by enhanced expression of cell cycle stimulatory cyclins and increased phosphorylation of retinoblastoma protein. Interestingly, this response was self-limited at later developmental time points by an upregulation of the cyclin-dependent kinase inhibitor p21. These results provide valuable insights into how alterations in sarcomere protein function modify postnatal heart development and highlight the potential for targeting cell cycle regulatory pathways to counteract cardiomyopathic stimuli.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5313062PMC
http://dx.doi.org/10.1172/jci.insight.90656DOI Listing

Publication Analysis

Top Keywords

sarcomere function
12
postnatal heart
12
heart development
12
alterations sarcomere
8
function modify
8
hyperplastic hypertrophic
8
hypertrophic transition
8
transition phase
8
phase mammalian
8
cell cycle
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!