From attachment to independence: Stress hormone control of ecologically relevant emergence of infants' responses to threat.

Curr Opin Behav Sci

Emotional Brain Institute, Nathan Kline Institute, New York University Langone Medical Center, New York, NY 10003; Child and Adolescent Psychiatry, New York University Langone Medical Center, New York, NY 10003; Center for Neural Science, New York University, New York, NY 10003.

Published: April 2017

Young infant rat pups learn to approach cues associated with pain rather than learning amygdala-dependent fear. This approach response is considered caregiver-seeking and ecologically relevant within the context of attachment. With maturation, increases in the stress hormone corticosterone permit amygdala-dependent fear, which is crucial for survival during independent living. During the developmental transition from attachment to fear learning, maternal presence suppresses corticosterone elevation to block amygdala-dependent fear learning and re-engage the attachment circuitry. Early life trauma disrupts this developmental sequence by triggering a precocious increase of corticosterone, which permits amygdala-dependent threat responses. In this review, we explore the importance of the stress hormone corticosterone in infants' transition from complete dependence on the caregiver to independence, with consideration for environmental influences on threat response ontogeny and mechanistic importance of social buffering of the stress response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5323260PMC
http://dx.doi.org/10.1016/j.cobeha.2016.12.010DOI Listing

Publication Analysis

Top Keywords

stress hormone
12
amygdala-dependent fear
12
ecologically relevant
8
hormone corticosterone
8
fear learning
8
attachment
4
attachment independence
4
stress
4
independence stress
4
hormone control
4

Similar Publications

The cation-proton antiporter (CPA) superfamily plays pivotal roles in regulating cellular ion and pH homeostasis in plants. To date, the regulatory functions of CPA family members in rice (Oryza sativa L.) have not been elucidated.

View Article and Find Full Text PDF

Maternal exposure to bisphenol A induces congenital heart disease through mitochondrial dysfunction.

FASEB J

January 2025

Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.

Congenital heart disease (CHD) represents a major birth defect associated with substantial morbidity and mortality. Although environmental factors are acknowledged as potential contributors to CHD, the underlying mechanisms remain poorly understood. Bisphenol A (BPA), a common endocrine disruptor, has attracted significant attention due to its widespread use and associated health risks.

View Article and Find Full Text PDF

Plants exhibit remarkable regenerative abilities under stress conditions like injury, herbivory, and damage from harsh weather, particularly through adventitious root formation. They have sophisticated molecular mechanisms to recognize and respond to wounding. Jasmonic acid (JA), a wound hormone, triggers auxin synthesis to stimulate root regeneration.

View Article and Find Full Text PDF

Experimental studies of chronic noise exposure in modern urban life testified about oxidative stress due to the corresponding hormones effects leading to accumulation of reactive oxygen species and endothelial dysfunction. This study aims to evaluate the protective effect of α2-adrenoblockers to modulate oxidative stress and corticosterone levels due to chronic noise exposure. To achieve this, we examined the effects of beditin (2-aminothiozolyl-1,4-benzodioxane) and mesedin (2-(2-methyl-amino-thiozolyl)-1,4-benzodioxane hydrochloride), along with changes in corticosterone, Ca2 + content, and morphological alterations in various tissues under noise-induced stress.

View Article and Find Full Text PDF

Zearalenone (ZEA) is a mycotoxin commonly found in moldy cereals and has a range of toxic effects that have seriously affected animal husbandry. Rutin, a natural flavonoid with antioxidant activities, has been studied for its potential involvement in mitigating ZEA-induced apoptosis in porcine endometrial stromal cells (ESCs) and its potential molecular mechanism, particularly concerning the expression of Nrf2. This study investigates the molecular pathways by which rutin alleviates ZEA-induced ESC apoptosis, focusing on the role of Nrf2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!