Tuning Localized Surface Plasmon Resonance Wavelengths of Silver Nanoparticles by Mechanical Deformation.

J Phys Chem C Nanomater Interfaces

Department of Chemistry, Clemson University, Clemson SC 29634; Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Clemson SC 29634.

Published: September 2016

We describe a simple technique to alter the shape of silver nanoparticles (AgNPs) by rolling a glass tube over them to mechanically compress them. The resulting shape change in turn induces a red-shift in the localized surface plasmon resonance (LSPR) scattering spectrum and exposes new surface area. The flattened particles were characterized by optical and electron microscopy, single nanoparticle scattering spectroscopy, and surface enhanced Raman spectroscopy (SERS). AFM and SEM images show that the AgNPs deform into discs; increasing the applied load from 0 to 100 N increases the AgNP diameter and decreases the height. This deformation caused a dramatic red shift in the nanoparticle scattering spectrum and also generated new surface area to which thiolated molecules could attach as evident from SERS measurements. The simple technique employed here requires no lithographic templates and has potential for rapid, reproducible, inexpensive and scalable tuning of nanoparticle shape, surface area, and resonance while preserving particle volume.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5325716PMC
http://dx.doi.org/10.1021/acs.jpcc.6b02169DOI Listing

Publication Analysis

Top Keywords

surface area
12
localized surface
8
surface plasmon
8
plasmon resonance
8
silver nanoparticles
8
simple technique
8
scattering spectrum
8
nanoparticle scattering
8
surface
6
tuning localized
4

Similar Publications

Inhalable Metal-Organic Frameworks: A Promising Delivery Platform for Pulmonary Diseases Treatment.

ACS Nano

January 2025

Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.

Inhalation delivery, offering a direct pathway for administering drugs to the lungs in the form of dry powders or aerosols, stands out as an optimal approach for the localized treatment of pulmonary diseases. However, the intricate anatomical architecture of the lung often poses challenges in maintaining effective drug concentrations within the lungs over extended periods. This highlights the pressing need to develop rational inhalable drug delivery systems that can improve treatment outcomes for respiratory diseases.

View Article and Find Full Text PDF

Eco-epidemiological Survey of Trypanosoma cruzi in Dogs from Mendoza, Argentina.

Ecohealth

January 2025

Laboratorio de Medicina y Endocrinología de la Fauna Silvestre, IMBECU, UNCuyo - CONICET, Av. Dr. Adrian Ruiz Leal s/n, Parque General San Martín, Mendoza, Argentina.

Urban domestic dog populations can provide important clues about the eco-epidemiological characteristics of Trypanosoma cruzi, the causative agent of Chagas disease (ChD). Given the limited data on ChD from the Metropolitan Area of Mendoza, Argentina, a seroprevalence survey of 327 dogs across an urban-rural gradient was conducted between April 2018 and May 2019. Seropositive cases were analyzed considering host, social, and environmental factors, subtypes (DTUs), and bloodstream parasite load.

View Article and Find Full Text PDF

Antimicrobial membranes based on polycaprolactone:pectin blends reinforced with zeolite faujasite for cloxacillin-controlled release.

Discov Nano

January 2025

National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil.

Multifunctional membranes applied to biomedical materials become attractive to support the biological agents and increase their properties. In this study, biopolymeric fibers based on polycaprolactone (PCL) and pectin (PEC) were reinforced with faujasite zeolite (FAU) for cloxacillin antibiotic (CLX) loading. FAU with a high specific surface area (347 ± 8 m g), high crystallinity and particles with a diameter of up to 100 nm were produced under optimized synthesis conditions (100 °C/4 h).

View Article and Find Full Text PDF

Construction of an electrochemical sensor for the detection of methyl parathion with three-dimensional graphdiyne-carbon nanotubes.

Mikrochim Acta

January 2025

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.

To enhance the application performance of graphdiyne (GDY) in electrochemical sensing, carbon nanotubes (CNTs) were grown in situ to construct three-dimensional nanoarchitectures of GDY-CNTs composites. GDY-CNTs showed superior electrochemical properties and detection response to MP when compared with GDY, as the in situ growth of CNTs significantly increased the electrode surface area and enhanced the electron transfer process. GDY-CNTs were successfully used to construct electrochemical sensors for methyl parathion (MP).

View Article and Find Full Text PDF

A novel electrochemical aptasensor based on bimetallic zirconium and copper oxides embedded within mesoporous carbon (denoted as ZrOCuO@mC) was constructed to detect miRNA. The porous ZrOCuO@mC was created through the pyrolysis of bimetallic zirconium/copper-based metal-organic framework (ZrCu-MOF). The substantial surface area and high porosity of ZrOCuO@mC nanocomposite along with its robust affinity toward aptamer strands, facilitated the effective anchoring of aptamer strands on the ZrOCuO@mC-modified electrode surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!