Block ionomer complexes consisting of siRNA and RAFT-synthesized hydrophilic--cationic copolymers II: The influence of cationic block charge density on gene suppression.

Polym Chem

Department of Polymer Science and Engineering, The University of Southern, Mississippi, Hattiesburg, MS 39406, USA; Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS 39406, USA.

Published: October 2016

Block ionomer complex (BIC)-siRNA interactions and effectiveness in cell transfection are reported. Aqueous RAFT polymerization was used to prepare a series of hydrophilic--cationic copolymers in which the cationic block statistically incorporates increasing amounts of neutral, hydrophilic monomer such that the number of cationic groups remains unchanged but the cationic charge density is diluted along the polymer backbone. Reduced charge density decreases the electrostatic binding strength between copolymers and siRNA with the goal of improving siRNA release after targeted cellular delivery. However, lower binding strength resulted in decreased transfection and RNA interference pathway activation, leading to reduced gene knockdown. Enzymatic siRNA degradation studies with BICs indicated lowered binding strength increases susceptibility to RNases, which is the likely cause for poor gene knockdown.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5321653PMC
http://dx.doi.org/10.1039/C6PY01048BDOI Listing

Publication Analysis

Top Keywords

charge density
12
binding strength
12
block ionomer
8
hydrophilic--cationic copolymers
8
cationic block
8
gene knockdown
8
block
4
ionomer complexes
4
complexes consisting
4
sirna
4

Similar Publications

Genetic improvement of low-lignin poplars: a new strategy based on molecular recognition, chemical reactions and empirical breeding.

Physiol Plant

December 2024

Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China.

As an important source of pollution in the papermaking process, the presence of lignin in poplar can seriously affect the quality and process of pulping. During lignin synthesis, Caffeoyl-CoA-O methyltransferase (CCoAOMT), as a specialized catalytic transferase, can effectively regulate the methylation of caffeoyl-coenzyme A (CCoA) to feruloyl-coenzyme A. Targeting CCoAOMT, this study investigated the substrate recognition mechanism and the possible reaction mechanism, the key residues of lignin binding were mutated and the lignin content was validated by deep convolutional neural-network model based on genome-wide prediction (DCNGP).

View Article and Find Full Text PDF

It is widely accepted that mobile ions are responsible for the slow electronic responses observed in metal halide perovskite-based optoelectronic devices, and strongly influence long-term operational stability. Electrical characterisation methods mostly observe complex indirect effects of ions on bulk/interface recombination, struggle to quantify the ion density and mobility, and are typically not able to fully quantify the influence of the ions upon the bulk and interfacial electric fields. We analyse the bias-assisted charge extraction (BACE) method for the case of a screened bulk electric field, and introduce a new characterisation method based on BACE, termed ion drift BACE.

View Article and Find Full Text PDF

Natural single-chain nanoparticles (SCNPs) such as proteins have inspired research into the formation and application of synthetic SCNPs. Although the latter can mimic general aspects of the self-assembly behavior of their biological counterparts, these systems remain relatively understudied. In this respect, a systematic series of amphiphilic statistical copolymers (ASC) of different molecular weights, with a hydrophilic comonomer (methacrylic acid) and varying hydrophobic comonomer to encompass methacrylates of different hydrophobicity, are synthesized.

View Article and Find Full Text PDF

A solution-gated indium-tin-oxide (ITO)-based field effect transistor (FET) without interfaces among the source, channel, and drain electrodes, which is called the one-piece ITO-FET, can be simply fabricated from a single sheet of ITO by etching the channel region. The direct contact of the ITO channel surface with a sample solution contributes to a steep subthreshold slope and a high on/off ratio. In this study, we have examined the effects of oxygen vacancies and hydroxy groups at the ITO channel surface on the electrical characteristics of the one-piece ITO-FET.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) poses significant treatment challenges due to its high metastasis, heterogeneity, and poor biomarker expression. The N-terminus of an octapeptide NAPVSIPQ () was covalently coupled to a carboxylic acid derivative of Ru(2,2'-bipy) () to synthesize an N-stapled short peptide-Rubpy conjugate (). This photosensitizer (PS) was utilized to treat TNBC through microtubule (MT) targeted chemotherapy and photodynamic therapy (PDT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!