Six transition metal ion complexes have been examined for their effects on the cell survival as well as their effectiveness in inducing the broadening of the electron spin resonance (ESR) spectra of nitroxide spin probes. These paramagnetic species are Ni(EDTA), Ni(DTPA), potassium tris(oxalato) chromate (chromium oxalate), K3Fe(CN)6, Cu(DTPA), and NiCl2. At 100 mM concentration, the typical concentration used in cell studies to broaden the extracellular nitroxide ESR signal, only Ni(EDTA) and Ni(DTPA) are found to be non-toxic to Chinese hamster ovary cells. The relative cytotoxicities of the six metal ion complexes are Cu(DTPA) greater than K3Fe(CN)6 greater than NiCl2 greater than chromium oxalate greater than Ni(DTPA) greater than Ni(EDTA). Thus, potassium ferricyanide and NiCl2, two most commonly used paramagnetic broadening agents, are relatively toxic to the cell. In contrast, among the six paramagnetic species tested here, chromium oxalate appears to be the most effective agent at non-toxic concentrations in inducing the broadening of the ESR spectra of both cationic and neutral nitroxide spin probes. By considering both their cytotoxicity and their effectiveness in causing line broadening of the nitroxide ESR spectra, chromium oxalate is a good paramagnetic broadening agent for spin probe studies of intact mammalian cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1330054 | PMC |
http://dx.doi.org/10.1016/S0006-3495(87)83253-8 | DOI Listing |
Int J Biol Macromol
January 2025
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research center of food biotechnology of Xiamen city, Xiamen, Fujian 361021, China. Electronic address:
In this study, polyethylene glycol 200 (PEG200) was employed as hydrogen bond acceptor, while organic acids served as hydrogen bond donors, to formulate poly-deep eutectic solvents (PDESs), which were utilized to pretreat tea stem. Specially, combining PEG200 and oxalic acid (OA) exhibited a notably high cellulose retention (82.03 %) and most efficient hemicellulose (97.
View Article and Find Full Text PDFFront Antibiot
April 2024
Department of Food Technology and Nutritional Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh.
Introduction: The misuse of antibiotics in poultry farming is a global issue.
Objective: The focus of this study was the health risk assessment of consumers from the determination of ciprofloxacin (CIP), tetracycline (TC), and oxytetracycline (OTC) in broiler chicken in the raw, frozen, and boiled stages using solid-phase extraction, high-performance liquid chromatography, and ultraviolet detection (SPE-HPLC-UV).
Materials And Methods: Chromatographic separation was achieved using 0.
Virulence
January 2025
The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China.
Oxalic acid (OA), an essential pathogenic factor, has been identified in several plant pathogens, and researchers are currently pursuing studies on interference with OA metabolism as a treatment for related diseases. However, the metabolic route in remains unknown. In this study, we describe D-erythroascorbic acid-mediated OA synthesis and its metabolic and clearance pathways in rice blast fungus.
View Article and Find Full Text PDFDalton Trans
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
In the history of magnetochemistry development, lanthanide-transition (3d-4f) heterometallic compounds have been considered an attractive candidate for magnetic refrigerants. Herein, a series of heterometallic compounds have been designed and templated by CO anions, that is, {[LnNi(L)(CO)(HO)]·HO} [Ln = Gd (. Gd2Ni) = Sm (.
View Article and Find Full Text PDFFoods
January 2025
Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510641, China.
Chlorine dioxide (ClO) gas has attracted considerable attention due to its safety and efficiency. In this study, we successfully developed a color-variable ClO slow-releasing card for postharvest litchi. The optimal ClO slow-releasing card was prepared as follows: Card A was soaked in 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!