Globally, soil respiration is one of the largest fluxes of carbon to the atmosphere and is known to be sensitive to climate change, representing a potential positive feedback. We conducted a number of field experiments to study independent and combined impacts of topography, watering, grazing and climate manipulations on bare soil and vegetated soil (i.e., ecosystem) respiration in northern Mongolia, an area known to be highly vulnerable to climate change and overgrazing. Our results indicated that soil moisture is the most important driving factor for carbon fluxes in this semi-arid ecosystem, based on smaller carbon fluxes under drier conditions. Warmer conditions did not result in increased respiration. Although the system has local topographical gradients in terms of nutrient, moisture availability and plant species, soil respiration responses to OTC treatments were similar on the upper and lower slopes, implying that local heterogeneity may not be important for scaling up the results. In contrast, ecosystem respiration responses to OTCs differed between the upper and the lower slopes, implying that the response of vegetation to climate change may override microbial responses. Our results also showed that light grazing may actually enhance soil respiration while decreasing ecosystem respiration, and grazing impact may not depend on climate change. Overall, our results indicate that soil and ecosystem respiration in this semi-arid steppe are more sensitive to precipitation fluctuation and grazing pressure than to temperature change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5325163 | PMC |
http://dx.doi.org/10.1016/j.geoderma.2016.01.041 | DOI Listing |
Glob Chang Biol
January 2025
Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China.
Leaf photosynthesis and respiration are two of the largest carbon fluxes between the atmosphere and biosphere. Although experiments examining the warming effects on photosynthetic and respiratory thermal acclimation have been widely conducted, the sensitivity of various ecosystem and vegetation types to warming remains uncertain. Here we conducted a meta-analysis on experimental observations of thermal acclimation worldwide.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China. Electronic address:
Grassland represents one of the most expansive terrestrial ecosystems, exerting a profound influence on atmospheric greenhouse gas (GHG) levels within the broader context of global change. Both climate and land use changes play important roles in modulating grassland GHG emissions by directly or indirectly altering soil physical and chemical properties, especially soil temperature and inorganic nitrogen content. The optimal grassland management practices need to simultaneously meet the requirements of reducing GHG emissions, maintaining biological biodiversity, and ensuring productivity.
View Article and Find Full Text PDFMar Environ Res
January 2025
Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China.
This study examines the seasonal variations in carbonate system parameters in the East China Sea (ECS) off the Yangtze River estuary (YRE) and analyzes the contributions of anthropogenic CO₂ and eutrophication to acidification. Carbonate parameters data were collected during summer 2019 and combined winter 2011. During winter, acidification is primarily driven by rising atmospheric CO₂, with minimal impact from biological processes.
View Article and Find Full Text PDFOecologia
January 2025
Department of Oceanography, Uehiro Center for the Advancement of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
Land-based inputs, such as runoff, rivers, and submarine groundwater, can alter biologic processes on coral reefs. While the abiotic factors associated with land-based inputs have strong effects on corals, corals are also affected by biotic interactions, including other neighboring corals. The biologic responses of corals to changing environmental conditions and their neighbors are likely interactive; however, few studies address both biotic and abiotic interactions in concert.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
Changes in winter precipitation accompanying emerging climate trends lead to a major carbon-climate feedback from Arctic tundra. However, the mechanisms driving the direction, magnitude, and form (CO and CH) of C fluxes and derived climate forcing (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!