Type 2 diabetes mellitus (T2D) is a complex metabolic disorder requiring polypharmacy treatment in clinic, with metformin being widely used antihyperglycemic drug. However, the mechanisms of metformin as a perpetrator inducing potential drug-drug interactions and adverse drug reactions are scarcely known to date. Carboxylesterases (CESs) are major hydrolytic enzymes highly expressed in the liver, including mouse carboxylesterase 1d (Ces1d) and Ces1e. In the present study, experiments are designed to investigate the effects and mechanisms of metformin on Ces1d and Ces1e in vivo and in vitro. In results, metformin suppresses the expression and activity of Ces1d and Ces1e in a dose- and time-dependent manner. The decreased expression of nuclear receptor PXR and its target gene P-gp indicates the involvements of PXR in the suppressed expression of carboxylesterases by metformin. Furthermore, metformin significantly suppresses the phosphorylation of AMPK and JNK, and the suppression of carboxylesterases induced by metformin is repeatedly abolished by AMPK inhibitor Compound C and JNK inhibitor SP600125. It implies that the activation of AMPK and JNK pathways mediates the suppression of carboxylesterases by metformin. The findings deserve further elucidation including clinical trials and have a potential to make contribution for the rational medication in the treatment of T2D patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2017.02.031DOI Listing

Publication Analysis

Top Keywords

suppression carboxylesterases
12
carboxylesterases metformin
12
ampk jnk
12
ces1d ces1e
12
metformin
9
vivo vitro
8
activation ampk
8
mechanisms metformin
8
metformin suppresses
8
carboxylesterases
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!