Carbon-based molecular junctions consisting of aromatic oligomers between conducting sp hybridized carbon electrodes exhibit structure-dependent current densities (J) when the molecular layer thickness (d) exceeds ∼5 nm. All four of the molecular structures examined exhibit an unusual, nonlinear ln J vs bias voltage (V) dependence which is not expected for conventional coherent tunneling or activated hopping mechanisms. All molecules exhibit a weak temperature dependence, with J increasing typically by a factor of 2 over the range of 200-440 K. Fluorene and anthraquinone show linear plots of ln J vs d with nearly identical J values for the range d = 3-10 nm, despite significant differences in their free-molecule orbital energy levels. The observed current densities for anthraquinone, fluorene, nitroazobenzene, and bis-thienyl benzene for d = 7-10 nm show no correlation with occupied (HOMO) or unoccupied (LUMO) molecular orbital energies, contrary to expectations for transport mechanisms based on the offset between orbital energies and the electrode Fermi level. UV-vis absorption spectroscopy of molecular layers bonded to carbon electrodes revealed internal energy levels of the chemisorbed films and also indicated limited delocalization in the film interior. The observed current densities correlate well with the observed UV-vis absorption maxima for the molecular layers, implying a transport mechanism determined by the HOMO-LUMO energy gap. We conclude that transport in carbon-based aromatic molecular junctions is consistent with multistep tunneling through a barrier defined by the HOMO-LUMO gap, and not by charge transport at the electrode interfaces. In effect, interfacial "injection" at the molecule/electrode interfaces is not rate limiting due to relatively strong electronic coupling, and transport is controlled by the "bulk" properties of the molecular layer interior.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.7b00597DOI Listing

Publication Analysis

Top Keywords

molecular junctions
12
current densities
12
molecular
9
carbon-based molecular
8
carbon electrodes
8
molecular layer
8
energy levels
8
observed current
8
orbital energies
8
uv-vis absorption
8

Similar Publications

Organic solar cells with 20.82% efficiency and high tolerance of active layer thickness through crystallization sequence manipulation.

Nat Mater

January 2025

Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.

Printing of large-area solar panels necessitates advanced organic solar cells with thick active layers. However, increasing the active layer thickness typically leads to a marked drop in the power conversion efficiency. Here we developed an organic semiconductor regulator, called AT-β2O, to tune the crystallization sequence of the components in active layers.

View Article and Find Full Text PDF

Tail Anchored protein insertion mediated by CAML and TRC40 links to neuromuscular function in mice.

PLoS Genet

January 2025

Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.

Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.

View Article and Find Full Text PDF

Rationally designed universal passivator for high-performance single-junction and tandem perovskite solar cells.

Nat Commun

January 2025

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China.

Interfacial trap-assisted nonradiative recombination hampers the development of metal halide perovskite solar cells (PSCs). Herein, we report a rationally designed universal passivator to realize highly efficient and stable single junction and tandem PSCs. Multiple defects are simultaneously passivated by the synergistic effect of anion and cation.

View Article and Find Full Text PDF

Structure of the Kaposi's sarcoma-associated herpesvirus gB in post-fusion conformation.

J Virol

January 2025

Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA.

Discovered in 1994 in lesions of an AIDS patient, Kaposi's sarcoma-associated herpesvirus (KSHV) is a member of the gammaherpesvirus subfamily of the family, which contains a total of nine that infect humans. These viruses all contain a large envelope glycoprotein, glycoprotein B (gB), that is required for viral fusion with host cell membrane to initial infection. Although the atomic structures of five other human herpesviruses in their postfusion conformation and one in its prefusion conformation are known, the atomic structure of KSHV gB has not been reported.

View Article and Find Full Text PDF

Nonalloyed α-phase formamidinium lead triiodide solar cells through iodine intercalation.

Science

January 2025

Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, P. R. China.

Formamidinium lead triiodide (FAPbI) is considered the most promising composition for high-performing single-junction solar cells. However, nonalloyed α-FAPbI is metastable with respect to the photoinactive δ-phase. We have developed a kinetic modulation strategy to fabricate high-quality and stable nonalloyed α-FAPbI films, assisted by cogenetic volatile iodine intercalation and decalation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!