The aim of the study was to evaluate insertion forces during manual insertion of a straight atraumatic electrode in human temporal bones, and post-implantation histologic evaluation of the samples to determine whether violation of intracochlear structures is related to insertion forces. In order to minimize intracochlear trauma and preserve residual hearing during cochlear implantation, knowledge of the insertion forces is necessary. Ten fresh frozen human temporal bones were prepared with canal wall down mastoidectomy. All samples were mounted on a one-axis force sensor. Insertion of a 16-mm straight atraumatic electrode was performed from different angles to induce "traumatic" insertion. Histologic evaluation was performed in order to evaluate intracochlear trauma. In 4 of 10 samples, dislocation of the electrode into scala vestibuli was observed. The mean insertion force for all 10 procedures was 0.003 ± 0.005 N. Insertion forces measured around the site of dislocation to scala vestibuli in 3 of 4 samples were significantly higher than insertion forces at the same location of the cochleae measured in samples without trauma (p < 0.04). Mean force during the whole insertion process of the straight atraumatic electrode is lower than reported by other studies using longer electrodes. Based on our study, insertion forces leading to basilar membrane trauma may be lower than the previously reported direct rupture forces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00405-017-4485-z | DOI Listing |
Cureus
December 2024
Department of Prosthodontics, Graduate School of Dentistry, Showa University, Tokyo, JPN.
Purpose: This study aims to evaluate the effects of taper angle and the number of insertion-removal cycles on the retention force of 4 mol% yttria partially stabilized zirconia (4Y-PSZ) double crowns over time.
Materials And Methods: Primary and secondary crowns were fabricated using 4Y-PSZ with taper angles of 2°, 4°, and 6° (n=15). Retention force during crown removal was measured after applying 50-N and 100-N loads.
Angew Chem Int Ed Engl
January 2025
Emory University, Chemistry, 1515 Dickey Dr., 30322, Atlanta, UNITED STATES OF AMERICA.
Genetically encoded tension sensors (GETSs) allow for quantifying forces experienced by intracellular proteins involved in mechanotransduction. The vast majority of GETSs are comprised of a FRET pair flanking an elastic "spring-like" domain that gradually extends in response to force. Because of ensemble averaging, the FRET signal generated by such analog sensors conceals forces that deviate from the average, and hence it is unknown if a subset of proteins experience greater magnitudes of force.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland.
Flat bands in Kagome graphene might host strong electron correlations and frustrated magnetism upon electronic doping. However, the porous nature of Kagome graphene opens a semiconducting gap due to quantum confinement, preventing its fine-tuning by electrostatic gates. Here we induce zero-energy states into a semiconducting Kagome graphene by inserting π-radicals at selected locations.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
August 2024
Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University; Hunan Engineering Research Center for Oral Digital Intelligence and Personalized Medicine; Hunan 3D Printing Engineering Research Center of Oral Care; WANG Songling Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410078.
Objectives: Drug-loaded mucoadhesive silk fibroin (SF) microneedle patch can overcome the limitations of low bioavailability and significant pain associated with traditional treatment methods, such as topical application or injection of triamcinolone for oral submucous fibrosis (OSF). However, these systems release the drug too quickly, failing to meet the clinical requirements. This study aims to construct a mucoadhesive SF microneedle patch pre-assembled with silk fibroin nanospheres (SFN) and explore its ability to sustain the release of triamcinolone in the treatment of OSF.
View Article and Find Full Text PDFCytotechnology
February 2025
Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria.
Mechanical and thermal cell damage can occur due to invasive procedures related to drilling, the insertion of dental implants, and periodontal treatments. Necrotic cells release the content of their cytoplasm and membrane fragments, thereby signaling the need for repair, which includes bone resorption by osteoclasts and inflammation. Here we screened lysates from human gingival fibroblasts, HSC2 and TR146 oral squamous carcinoma cell lines, as well as murine IDG-SW3 osteocytic and RAW264.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!