Recent evidence suggests that plant performance can be influenced by the phylogenetic diversity of neighboring plants. However, no study to date has examined the effect of such phylogenetic density dependence on the transition from seed to seedling. Using 6 years of data on seedling recruitment and seed rain of 13 species from 130 stations (one 0.5 m seed trap and three adjacent 1 m seedling plots) in a subtropical evergreen forest, we asked: (1) Does negative density dependence act across seed to seedling stages? (2) Is there evidence for phylogenetic density dependence during the seed to seedling transition? (3) Does the strength of density dependence vary among years? Generalized linear mixed-effects models were used to model seed to seedling transition as a function of conspecific seed and seedling densities, heterospecific seed and seedling densities, and mean phylogenetic distance of heterospecific seeds and seedling. Conspecific seed density had a significant negative effect on seedling transition rates for 12 of 13 focal species. In contrast, conspecific seedling density had a positive effect for 7 species, suggesting species-specific habitat preferences. Few species were significantly affected by the density or phylogenetic relatedness of heterospecific seeds and seedlings. Only conspecific seed density effects varied among years for most focal species. Overall, our results reveal that conspecific seed and seedling densities play a more important role than the density or relatedness of heterospecific seeds and seedlings during the seed to seedling stage, suggesting that species-specific seed predators, along with habitat preferences, may contribute to diversity maintenance in this forest.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00442-017-3842-3 | DOI Listing |
Appl Biochem Biotechnol
January 2025
CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India.
The present study investigated the genomic and functional potential of Burkholderia contaminans PB_AQ24, a bacterial strain isolated from the municipal solid waste dumpsite, for boosting the growth of Dendrocalamus strictus (Male bamboo) seedlings. The isolated strain exhibited high potency for metal solubilization and ACC (1-Aminocyclopropane-1-carboxylate) deaminase activity. Its genome harbored diverse genes responsible for nitrogen and phosphorus utilization (trpABCDES, iaaH, acdS, pstABCS, phoAUD, pqqABCDE, kdpABC, gln, and nirBD) and also an abundance of heavy metal tolerant genes (ftsH, hptX, iscX-fdx-hscAB-iscAUR, mgtA, corA, and copC).
View Article and Find Full Text PDFSci Rep
January 2025
U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA.
Thermoinhibition, the suppression of seed germination by high temperatures, is an adaptive trait that ensures successful seedling establishment in natural environments. While beneficial for wild plants, thermoinhibition can adversely affect crop yields due to uneven and reduced germination rates, particularly in the face of climate change. To understand the genetic basis of thermoinhibition, we conducted a comprehensive genetic analysis of a diverse panel of Lactuca spp.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
Green synthesis of nanoparticles (NPs) is preferred for its affordability and environmentally friendly approach. This study explored the synthesis and characterization of silver NPs (AgNPs) and examined their impact on the growth of Zea mays, both alone and in combination with nickel chloride (NiCl). A methanolic leaf extract was combined with silver nitrate to synthesize AgNPs.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Sanya Institute of China Agricultural University, Sanya, 572025, China.
High temperature stress seriously affects the quality and yield of vegetable crops, especially cucumber (Cucumis sativus L.). However, the metabolic dynamics and gene regulatory network of cucumber in response to high temperature stress remain poorly studied.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Horticultural Sciences, College of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Kerman, Iran.
Global warming and declining rainfall in recent years have led to increased water and soil salinity in Iran agricultural lands. To address these challenges, greenhouse cultivation, particularly soilless culture, emerges as a critical solution for mitigating the effect of soil salinity and water scarcity on vegetable plant production in Iran. The aim of this experiment was to compare the growth and physiological responses of cucumber plants cultivated in both soil and soilless systems, using three distinct nutrient solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!