Multispectral imaging (MSI) can potentially assist the intra-operative assessment of tissue structure, function and viability, by providing information about oxygenation. In this paper, we present a novel technique for recovering intrinsic MSI measurements from endoscopic RGB images without custom hardware adaptations. The advantage of this approach is that it requires no modification to existing surgical and diagnostic endoscopic imaging systems. Our method uses a radiometric color calibration of the endoscopic camera's sensor in conjunction with a Bayesian framework to recover a per-pixel measurement of the total blood volume (THb) and oxygen saturation (SO) in the observed tissue. The sensor's pixel measurements are modeled as weighted sums over a mixture of Poisson distributions and we optimize the variables SO and THb to maximize the likelihood of the observations. To validate our technique, we use synthetic images generated from Monte Carlo physics simulation of light transport through soft tissue containing sub-surface blood vessels. We also validate our method on in vivo data by comparing it to a MSI dataset acquired with a hardware system that sequentially images multiple spectral bands without overlap. Our results are promising and show that we are able to provide surgeons with additional relevant information by processing endoscopic images with our modeling and inference framework.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2017.2665627 | DOI Listing |
J Biomed Opt
January 2025
The Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States.
Significance: Laparoscopic surgery presents challenges in localizing oncological margins due to poor contrast between healthy and malignant tissues. Optical properties can uniquely identify various tissue types and disease states with high sensitivity and specificity, making it a promising tool for surgical guidance. Although spatial frequency domain imaging (SFDI) effectively measures quantitative optical properties, its deployment in laparoscopy is challenging due to the constrained imaging environment.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Laboratory Medicine, Clinical Laboratory Medicine Research Center of West China Hospital, Med+X Center for Manufacturing, Department of Rheumatology & Immunology, National Clinical Research Center for Geriatrics, Department of Gynecology of West China Tianfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
Homogeneous analysis techniques offer several advantages as alternatives to heterogeneous immunoassays, such as simplicity and rapidity. In this study, a visual homogeneous immunoassay without a labeling process was developed based on target-induced steric hindrance to regulate competitive recognition mechanism. Specifically, as the analyte concentration varies, the change of microenvironment based on steric hindrance could affect the recognition of Cu by signal probes.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China. Electronic address:
In this study, a novel "OFF-ON" fluorescent probe MPZ ((E)-5-((10-ethyl-2-methoxy-10H-phenothiazin-3-yl)methylene)thiazolidine-2,4-dione) based on phenothiazine is synthesized, which can rapidly (7 s) detect biogenic amines (BAs) through deprotonation, utilizing both colorimetric and fluorescent dual channels. An app for visual portable detection of fish freshness, named "Visual Evaluation", is independently developed. This app integrates several functions, including image capture, editable scanning of red, green, and blue (RGB) values, data analysis fitting, data storage, and verification.
View Article and Find Full Text PDFBot Stud
January 2025
Crop Science Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, Taichung, 413, Taiwan.
Background: Rice is a staple food for the global population. However, extreme weather events threaten the stability of the water supply for agriculture, posing a critical challenge to the stability of the food supply. The use of technology to assess the water status of rice plants enables the precise management of agricultural water resources.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Electronic and Communication Engineering, Sun Yat-sen University, Shenzhen 518000, China.
Exploring the relationships between plant phenotypes and genetic information requires advanced phenotypic analysis techniques for precise characterization. However, the diversity and variability of plant morphology challenge existing methods, which often fail to generalize across species and require extensive annotated data, especially for 3D datasets. This paper proposes a zero-shot 3D leaf instance segmentation method using RGB sensors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!