The goal of the current article is to update new findings in membrane fouling and emerging fouling mitigation strategies reported in recent years (post 2010) as a follow-up to our previous review published in Water Research (2009). According to a systematic review of the literature, membrane bioreactors (MBRs) are still actively investigated in the field of wastewater treatment. Notably, membrane fouling remains the most challenging issue in MBR operation and attracts considerable attention in MBR studies. In this review, we summarized the updated information on foulants composition and characteristics in MBRs, which greatly improves our understanding of fouling mechanisms. Furthermore, the emerging fouling control strategies (e.g., mechanically assisted aeration scouring, in-situ chemical cleaning, enzymatic and bacterial degradation of foulants, electrically assisted fouling mitigation, and nanomaterial-based membranes) are comprehensively reviewed. As a result, it is found that the fundamental understanding of dynamic changes in membrane foulants during a long-term operation is essential for the development and implementation of fouling control methods. Recently developed strategies for membrane fouling control denoted that the improvement of membrane performance is not our ultimate and only goal, less energy consumption and more green/sustainable fouling control ways are more promising to be developed and thus applied in the future. Overall, such a literature review not only demonstrates current challenges and research needs for scientists working in the area of MBR technologies, but also can provide more useful recommendations for industrial communities based on the related application cases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2017.02.006 | DOI Listing |
Adv Healthc Mater
January 2025
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
Medical catheters are susceptible to biological contamination and pathogen invasion, leading to infection and inflammatory complications. The development of antimicrobial coatings for medical devices has emerged as a promising strategy. However, limited biological functionality and the incompatibility between bactericidal properties and biosafety remain great challenges.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Air Liquide, Brussels, Belgium. Electronic address:
The operation of a reverse osmosis (RO) system is often severely hindered by the deposition of inorganic scales such as calcium carbonate on the membrane surface. Mitigation of this scaling phenomenon requires suitable pH control strategies, with the use of strong mineral acids (e.g.
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China.
Submerged membrane bioreactor (SMBR) is a promising technology in municipal wastewater treatment, but the membrane fouling has restricted its development. In this study, an integrated submerged ceramic membrane bioreactor (C-SMBR) was constructed to treat domestic wastewater, and the characteristics of membrane fouling and the microbial community structure were investigated. The results showed that the average removal efficiencies of COD, TN, NH-N reached 94.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Environmental Science and Engineering, Tiangong University, State Key Laboratory of Separation Membranes and Membrane Processes, Binshui West Road 399, Xiqing District, Tianjin, 300387, PR China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China. Electronic address:
Biofouling has been one of the major challenges impacting the long-term stable operation of ultrafiltration processes. Irreversible biofouling is considerably more harmful than reversible biofouling. Conductive membrane, as a new technology to effectively mitigate membrane fouling, lack research of controlling irreversible biofouling.
View Article and Find Full Text PDFWater Res
December 2024
Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Electronic address:
Calcium (Ca)-enhanced organic matter (OM) fouling of nanofiltration (NF) membranes leads to reduced flux during desalination and requires frequent cleaning. Fouling mechanisms are not fully understood, which limits the development of targeted fouling control methods. This study employed synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near-edge structure (XANES) spectroscopy to quantify the spatial distribution and mass of Ca deposition as well as changes in the Ca coordination environment characteristic of specific fouling mechanisms, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!