N-Acetylcysteine (NAC) is a non-antibiotic drug with antimicrobial properties against biofilm phenotypes of Gram-positive and Gram-negative bacteria. Our aim was to assess the effects of NAC on the growth of Gram-positive human skin and mucous membrane pathogens in the planktonic and biofilm phases. The minimum inhibitory concentrations (MICs) of NAC against Enterococcus faecalis, Corynebacterium ammoniagenes, Mycobacterium smegmatis, Propionibacterium acnes, Staphylococcus aureus, S. epidermidis, Streptococcus pyogenes, and 14 clinical strains of coagulase-negative staphylococci (CNS) ranged from 0.098 to 25 mg/ml. We found that at sub-MICs of NAC the adherence of E. faecalis, S. epidermidis, and nine CNS strains significantly reduced. However, biofilm formation of E. faecalis, S. aureus and two CNS strains increased at sub-MICs of NAC. Furthermore, a dose-related decrease in biofilm formation of C. ammoniagenes, M. smegmatis, P. acnes, S. pyogenes, and S. epidermidis was observed. The effect of NAC on planktonic growth and biofilm formation of the M. smegmatis cell was also time-dependent. We have selected P. acnes VKM Ac-1450 Rif strain with total resistance to rifampicin and used this microorganism for multispecies P. acnes - S. epidermidis biofilm model. The biofilm formation and growth of mixed culture of P. acnes and S. epidermidis was significantly slowed at 12.5 mg/ml of NAC. NAC also has a higher disruptive effect on both mature M. smegmatis and mixed P. acnes - S. epidermidis biofilm. Thus, NAC appears to be a promising, non-antibiotic alternative to prevent biofilm-associated infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2017.02.030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!