Inorganic arsenic inhibits the nucleotide excision repair pathway and reduces the expression of XPC.

DNA Repair (Amst)

Department of Toxicology and Cancer Biology, The Markey Cancer Center, University of Kentucky, Lexington, KY, United States. Electronic address:

Published: April 2017

Chronic exposure to arsenic, most often through contaminated drinking water, has been linked to several types of cancer in humans, including skin and lung cancer. However, the mechanisms underlying its role in causing cancer are not well understood. There is evidence that exposure to arsenic can enhance the carcinogenicity of UV light in inducing skin cancers and may enhance the carcinogenicity of tobacco smoke in inducing lung cancers. The nucleotide excision repair (NER) pathway removes different types of DNA damage including those produced by UV light and components of tobacco smoke. The aim of the present study was to investigate the effect of sodium arsenite on the NER pathway in human lung fibroblasts (IMR-90 cells) and primary mouse keratinocytes. To measure NER, we employed a slot-blot assay to quantify the introduction and removal of UV light-induced 6-4 photoproducts (6-4 PP) and cyclobutane pyrimidine dimers (CPDs). We find a concentration-dependent inhibition of the removal of 6-4 PPs and CPDs in both cell types treated with arsenite. Treatment of both cell types with arsenite resulted in a significant reduction in the abundance of XPC, a protein that is critical for DNA damage recognition in NER. The abundance of RNA expressed from several key NER genes was also significantly reduced by treatment of IMR-90 cells with arsenite. Finally, treatment of IMR-90 cells with MG-132 abrogated the reduction in XPC protein, suggesting an involvement of the proteasome in the reduction of XPC protein produced by treatment of cells with arsenic. The inhibition of NER by arsenic may reflect one mechanism underlying the role of arsenic exposure in enhancing cigarette smoke-induced lung carcinogenesis and UV light-induced skin cancer, and it may provide some insights into the emergence of arsenic trioxide as a chemotherapeutic agent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5535078PMC
http://dx.doi.org/10.1016/j.dnarep.2017.02.009DOI Listing

Publication Analysis

Top Keywords

imr-90 cells
12
xpc protein
12
nucleotide excision
8
excision repair
8
exposure arsenic
8
underlying role
8
enhance carcinogenicity
8
tobacco smoke
8
ner pathway
8
dna damage
8

Similar Publications

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

CircZMYM2 Alleviates TGF-β1-Induced Proliferation, Migration and Activation of Fibroblasts via Targeting miR-199b-5p/KLF13 Axis.

Appl Biochem Biotechnol

January 2025

Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital Affiliated to Tianjin Medical University, No.154 Heping Road to Anshan, Tianjin City, 300052, People's Republic of China.

Dysregulated circular RNAs (circRNAs) has been revealed to be involved in pulmonary fibrosis progression. Herein, this study focused on exploring the function and mechanism of circRNA Zinc Finger MYM-Type Containing 2 (circZMYM2) on idiopathic pulmonary fibrosis (IPF) using transforming growth factor (TGF)-β1-stimulated fibroblasts. Human fibroblast cell lines IMR-90 and HFL1 were stimulated with TGF-β1 to mimic fibrosis condition in vitro.

View Article and Find Full Text PDF

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

TLR2-EGR1 signaling axis modulates TGFβ1-induced differentiation of fibroblasts into myofibroblasts in pulmonary fibrosis.

Biochem Biophys Res Commun

December 2024

Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea; Cancer and Metabolism Institute, Konkuk University, Seoul 05029, Republic of Korea. Electronic address:

Pulmonary fibrosis is a progressive lung condition characterized by the excessive activation of myofibroblasts. Transforming growth factor beta 1 (TGFβ1) plays a crucial role in the differentiation of fibroblasts into myofibroblasts. In addition, toll-like receptor 2 (TLR2), known for its role in immune responses, contributes to pulmonary fibrosis by promoting myofibroblast differentiation.

View Article and Find Full Text PDF

Background: Oxatomide, an antihistamine drug of the diphenylmethylpiperazine family, has anti-inflammatory effects in airway disease. Because oxatomide was shown to cause diverse physiological responses in several cell models, the impact of oxatomide on Ca signaling and its related physiological effects has not been explored in IMR-90 human fetal lung fibroblasts.

Objectives: This study assessed the effect of oxatomide on cell viability and intracellular free Ca concentrations ([Ca]) and examined whether oxatomide-induced cytotoxicity through Ca signaling in IMR-90 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!