The increased prevalence of metronidazole-resistant infections has resulted in a search for alternative drugs for the treatment of trichomoniasis. In the present study, we report the preparation and in vitro activity of three 1,3-dioxolanes that contain tellurium (PTeDOX 01, PTeDOX 02, and PTeDOX 03) against Trichomonas vaginalis. Six concentrations of these compounds were analyzed for in vitro activity against ATCC 30236 isolate of T. vaginalis. PTeDOX 01 reported a cytotoxic effect against 100% of T. vaginalis trophozoites at a final concentration of 90μM with an IC of 60μM. The kinetic growth curve of trophozoites indicated that PTeDOX 01 reduced the growth by 22% at a concentration of 90μM after an exposure of 12h, and induced complete parasite death at 24h. It induced cytotoxicity of 44% at 90μM concentration but and had no effect in lower concentrations in a culture of CHO-K1 cells. These results confirmed that PTeDOX 01 is an important drug for the treatment of T. vaginalis, and should be evaluated in other infectious agents as well.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2017.01.173DOI Listing

Publication Analysis

Top Keywords

13-dioxolanes tellurium
8
trichomonas vaginalis
8
vitro activity
8
ptedox ptedox
8
concentration 90μm
8
ptedox
6
vaginalis
5
antiparasitic activity
4
activity 13-dioxolanes
4
tellurium trichomonas
4

Similar Publications

Tellurium, recognized as one of the technology-critical elements, should be considered as a xenobiotic. Its application, i.a.

View Article and Find Full Text PDF

While polyetherketoneketone is a high-performance thermoplastic polymer, its hydrophobicity and inertness limit bone adhesion. This study aimed to evaluate a novel PEKK/CaSiO/TeO nanocomposite, comparing it to PEKK/15 wt.% CaSiO and PEKK groups.

View Article and Find Full Text PDF

Exploring the correlation between chemical bonding and structural distortions in TbCuTe.

J Phys Condens Matter

January 2025

Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.

The design of solid-state materials requests a thorough understanding of the structural preferences among plausible structure models. Since the bond energy contributes to the formation energy of a given structure model, it also is decisive to determine the nature of chemical bonding for a given material. In this context, we were motivated to explore the correlation between chemical bonding and structural distortions within the low-dimensional tellurium fragments in TbCuTe.

View Article and Find Full Text PDF

Fabrication of TeNT/TeO heterojunction based sensor for ultrasensitive detection of NO.

J Hazard Mater

January 2025

School of Integrated Circuits, Dalian University of Technology, Dalian, Liaoning 116024, China. Electronic address:

Tellurium nanotubes (TeNT) heterojunction with Tellurium oxide (TeO) were prepared by in situ oxidation at elevated temperatures in air. The chemiresistive type NO sensor was then fabricated by depositing the synthesized TeNT/TeO on the integrated gold electrodes. The response of the TeNT/TeO based sensor to 600 ppb NO was 38.

View Article and Find Full Text PDF

An effective long-term nitrogen dioxide (NO) monitoring at trace concentration is critical for protecting the ecological environment and public health. Tellurium (Te), as a recently discovered 2D elemental material, is promising for NO detection because of its suitable band structure for gas adsorption and charge mobility. However, the high activity of Te leads to poor stability in ambient and harsh conditions, limiting its application as a gas-sensitive material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!