Aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) is a specialized chaperone of phosphodiesterase 6, a key effector enzyme in the phototransduction cascade. The FKBP domain of AIPL1 is known to bind the farnesyl moiety of PDE6. Mutations in AIPL1, including many missense mutations in the FKBP domain, have been associated with Leber congenital amaurosis, a severe blinding disease. Here, we report the backbone and sidechain assignments of the N-terminal FKBP (with a loop deletion) of AIPL1 in complex with a farnesyl ligand. We also compare the predicted secondary structures of FKBP with those of a highly homologous AIP FKBP. These results show that the FKBP domains of AIP and AIPL1 have similar folds, but display subtle differences in structure and dynamics. Therefore, these assignments provide a framework for further elucidation of the mechanism of farnesyl binding and the function of AIPL1 FKBP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5385707 | PMC |
http://dx.doi.org/10.1007/s12104-017-9730-2 | DOI Listing |
Methods Mol Biol
December 2024
Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan.
Oxysterol-binding protein (OSBP)-related proteins (ORPs) are a large family of lipid transfer proteins (LTPs) in mammals. ORPs mediate the countertransport of two distinct lipids at membrane contact sites (MCSs). ORP10 is localized via binding to ORP9 at the endoplasmic reticulum (ER)-endosome MCSs, where it mediates countertransport of phosphatidylinositol 4-phosphate (PI4P) and phosphatidylserine (PS).
View Article and Find Full Text PDFPhysiol Mol Biol Plants
November 2024
Key Lab. of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing, 246133 China.
Unlabelled: As components of a family of proteins with peptidyl-prolyl isomerase activity family, FKBP (FK506-binding protein) and CYP (Cyclophilins) exert crucial roles in various physiological and biochemical processes such as cell signal transduction and stress resistance. The functions of the FKBP or CYP family have been extensively discussed in various organisms, while the comprehensive characterization of this family in remains unreported. In this study, a total of 22 and 26 genes were identified in the genome of , with highly conserved functional domains observed within each member of these gene families.
View Article and Find Full Text PDFElife
December 2024
Institute of Biochemistry, University of Kiel, Kiel, Germany.
The development of proteolysis targeting chimeras (PROTACs), which induce the degradation of target proteins by bringing them into proximity with cellular E3 ubiquitin ligases, has revolutionized drug development. While the human genome encodes more than 600 different E3 ligases, current PROTACs use only a handful of them, drastically limiting their full potential. Furthermore, many PROTAC development campaigns fail because the selected E3 ligase candidates are unable to induce degradation of the particular target of interest.
View Article and Find Full Text PDFBiomacromolecules
December 2024
Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States.
J Gen Physiol
December 2024
Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology lab, Karolinska Institutet, Stockholm, Sweden.
The ryanodine receptor type 1 (RyR1) is a Ca2+ release channel that regulates skeletal muscle contraction by controlling Ca2+ release from the sarcoplasmic reticulum (SR). Posttranslational modifications (PTMs) of RyR1, such as phosphorylation, S-nitrosylation, and carbonylation are known to increase RyR1 open probability (Po), contributing to SR Ca2+ leak and skeletal muscle dysfunction. PTMs on RyR1 have been linked to muscle dysfunction in diseases like breast cancer, rheumatoid arthritis, Duchenne muscle dystrophy, and aging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!