Glioblastoma spheroids produce infiltrative gliomas in the rat brainstem.

Childs Nerv Syst

Department of Neurological Surgery, Weill Medical College of Cornell University, 525 East 68th Street, Box 99, New York, NY, 10065, USA.

Published: March 2017

Purpose: Diffuse intrinsic pontine glioma (DIPG) is universally fatal without proven therapy other than radiation therapy for palliation. Representative animal models will play an essential role in the preclinical stage of future therapy development. To address the shortage of representative models, we created a novel infiltrative brainstem glioma model in rats based on glioblastoma spheroids.

Methods: Cells dissociated from glioblastoma spheroids grown from surgical specimens were implanted into the brainstem of NIH nude rats. Animals were serially assessed clinically and radiographically with magnetic resonance imaging (MRI). Tumors were further characterized using histology, immunohistochemistry, and cytogenetics.

Results: Tumor generation was successful in all animals receiving glioblastoma spheroid cells. The rats survived 17-25 weeks before severe symptoms developed. The tumors showed as diffuse hyperintense lesions on T2-weighted images. Histologically, they demonstrated cellular heterogeneity, and infiltrative and invasive features, with cells engorging vascular structures. The tumors were shown to comprise immature human origin glial tumor cells, with human epidermal growth factor receptor (EGFR) gene amplification and gain.

Conclusions: This study showed that cells from glioblastoma spheroids produced infiltrative gliomas in rat brainstem. The rat brainstem gliomas are radiographically and histologically accurate compared to DIPG. These tumors develop over several months that would allow sequential clinical and radiographic assessments of therapeutic interventions. This study demonstrated in principle the feasibility of developing patient-specific animal models based on putative cancer stem cells from biopsy or resection samples.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00381-017-3344-yDOI Listing

Publication Analysis

Top Keywords

glioblastoma spheroids
12
rat brainstem
12
infiltrative gliomas
8
gliomas rat
8
animal models
8
cells
6
glioblastoma
5
brainstem
5
spheroids produce
4
infiltrative
4

Similar Publications

Deep-tissue solid cancer treatment has a poor prognosis, resulting in a very low 5-year patient survival rate. The primary challenges facing solid tumor therapies are accessibility, incomplete surgical removal of tumor tissue, the resistance of the hypoxic and heterogeneous tumor microenvironment to chemotherapy and radiation, and suffering caused by off-target toxicities. Here, sonodynamic therapy (SDT) is an evolving therapeutic approach that uses low-intensity ultrasound to target deep-tissue solid tumors.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) presents one of the main obstacles to delivering anticancer drugs in glioblastoma. Herein, we investigated the potential of a series of cyclic ruthenium-peptide conjugates as photoactivated therapy candidates for the treatment of this aggressive tumor. The three compounds studied, , , and ([Ru(Phphen) Ac-XRGDX-NH)]Cl with Phphen = 4,7-diphenyl-1,10-phenanthroline and X, X = His or Met), include an integrin-targeted pentapeptide coordinated to a ruthenium warhead via two photoactivated ruthenium-X bonds.

View Article and Find Full Text PDF

Background: Despite the development of various therapeutic approaches over the past decades, the treatment of glioblastoma multiforme (GBM) remains a major challenge. The extracellular adenosine-generating enzyme, CD73, is involved in the pathogenesis and progression of GBM, and targeting CD73 may represent a novel approach to treat this cancer. In this study, three-dimensional culture systems based on three hydrogel compositions were characterized and an optimal type was selected to simulate the GBM microenvironment.

View Article and Find Full Text PDF

Regrettably, glioblastoma multiforme (GBM) remains the deadliest form of brain cancer, where the early diagnosis plays a pivotal role in the patient's therapy and prognosis. Hence, we report for the first time the design, synthesis, and characterization of new hybrid organic-inorganic stimuli-responsive nanoplexes (NPX) for bioimaging and killing brain cancer cells (GBM, U-87). These nanoplexes were built through coupling two nanoconjugates, produced using a facile, sustainable, green aqueous colloidal process ("bottom-up").

View Article and Find Full Text PDF

Transfer of and increases 3D growth and invasiveness in recipient cancer cells.

Extracell Vesicles Circ Nucl Acids

July 2024

Laboratory of James G. Patton, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.

Aim: Extracellular communication via the transfer of vesicles and nanoparticles is now recognized to play an important role in tumor microenvironment interactions. Cancer cells upregulate and secrete abundant levels of and that can alter gene expression in donor and recipient cells. In this study, we sought to identify targets of and and conclusively demonstrate that microRNAs (miRNAs) can be functionally transferred from donor to recipient cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!