The mitochondrial aspartate-glutamate carrier isoform 1 (AGC1) catalyzes a Ca-stimulated export of aspartate to the cytosol in exchange for glutamate, and is a key component of the malate-aspartate shuttle which transfers NADH reducing equivalents from the cytosol to mitochondria. By sustaining the complete glucose oxidation, AGC1 is thought to be important in providing energy for cells, in particular in the CNS and muscle where this protein is mainly expressed. Defects in the AGC1 gene cause AGC1 deficiency, an infantile encephalopathy with delayed myelination and reduced brain N-acetylaspartate (NAA) levels, the precursor of myelin synthesis in the CNS. Here, we show that undifferentiated Neuro2A cells with down-regulated AGC1 display a significant proliferation deficit associated with reduced mitochondrial respiration, and are unable to synthesize NAA properly. In the presence of high glutamine oxidation, cells with reduced AGC1 restore cell proliferation, although oxidative stress increases and NAA synthesis deficit persists. Our data suggest that the cellular energetic deficit due to AGC1 impairment is associated with inappropriate aspartate levels to support neuronal proliferation when glutamine is not used as metabolic substrate, and we propose that delayed myelination in AGC1 deficiency patients could be attributable, at least in part, to neuronal loss combined with lack of NAA synthesis occurring during the nervous system development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbadis.2017.02.022 | DOI Listing |
Mol Metab
December 2024
Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom. Electronic address:
Objective: Citrin, the mitochondrial aspartate/glutamate carrier isoform 2 (AGC2), is structurally and mechanistically the most complex SLC25 family member, because it consists of three domains and forms a homo-dimer. Each protomer has an N-terminal calcium-binding domain with EF-hands, followed by a substrate-transporting carrier domain and a C-terminal domain with an amphipathic helix. The absence or dysfunction of citrin leads to citrin deficiency, a highly prevalent pan-ethnic mitochondrial disease.
View Article and Find Full Text PDFPlant Cell Environ
February 2025
Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
Chondrocytes in adult joints are mechanosensitive post-mitotic quiescent cells with robustly expressed both Piezo1 and Piezo2 ion channels. Here, we examined the mechano-adaptation and Piezo modulations in articular chondrocytes using a mouse exercise model. We first found differential expression patterns of PIEZO1 and PIEZO2 in articular chondrocytes of healthy knee joints; chondrocytes in tibial cartilage (T) exhibit significantly higher PIEZO1 and PIEZO2 than femoral chondrocytes (F).
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
November 2024
Department of Biosciences Biotechnologies and Environment, University of Bari "A. Moro", 70125, Bari, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70126 Bari, Italy. Electronic address:
ɣ-aminobutyric acid (GABA) is a four‑carbon amino acid acting as the main inhibitory transmitter in the invertebrate and vertebrate nervous systems. The metabolism of GABA is well compartmentalized in the cell and the uptake of cytosolic GABA into the mitochondrial matrix is required for its degradation. A previous study carried out in the fruit fly Drosophila melanogaster indicated that the mitochondrial aspartate/glutamate carrier (AGC) is responsible for mitochondrial GABA accumulation.
View Article and Find Full Text PDFMol Genet Metab
August 2024
Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland. Electronic address:
The malate aspartate shuttle (MAS) plays a pivotal role in transporting cytosolic reducing equivalents - electrons - into the mitochondria for energy conversion at the electron transport chain (ETC) and in the process of oxidative phosphorylation. The MAS consists of two pairs of cytosolic and mitochondrial isoenzymes (malate dehydrogenases 1 and 2; and glutamate oxaloacetate transaminases 1 and 2) and two transporters (malate-2-oxoglutarate carrier and aspartate glutamate carrier (AGC), the latter of which has two tissue-dependent isoforms AGC1 and AGC2). While the inner mitochondrial membrane is impermeable to NADH, the MAS forms one of the main routes for mitochondrial electron uptake by promoting uptake of malate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!