Itraconazole (ITZ) is an antifungal agent used clinically to treat mycotic infections. However, its therapeutic effects are limited by low solubility in aqueous media. Liposome-based delivery systems (LDS) have been proposed as a delivery mechanism for ITZ to alleviate this problem. Furthermore, PEGylation, the inclusion in the formulation of a protective "stealth sheath" of poly(ethylene glycol) around carrier particles, is widely used to increase circulation time in the bloodstream and hence efficacy. Together, these themes highlight the importance of mechanistic and structural understanding of ITZ incorporation into liposomes both with and without PEGylation because it can provide a potential foundation for the rational design of LDS-based systems for delivery of ITZ, using alternate protective polymers or formulations. Here we have combined atomistic simulations, cryo-TEM, Langmuir film balance, and fluorescence quenching experiments to explore how ITZ interacts with both pristine and PEGylated liposomes. We found that the drug can be incorporated into conventional and PEGylated liposomes for drug concentrations up to 15 mol % without phase separation. We observed that, in addition to its protective properties, PEGylation significantly increases the stability of liposomes that host ITZ. In a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer without PEGylation, ITZ was found to reside inside the lipid bilayer between the glycerol and the double-bond regions of POPC, adopting a largely parallel orientation along the membrane surface. In a PEGylated liposome, ITZ partitions mainly to the PEG layer. The results provide a solid basis for further development of liposome-based delivery systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.molpharmaceut.6b00969 | DOI Listing |
Heliyon
November 2024
Department of Civil Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
This study introduces an innovative approach to enhancing recycled aggregate concrete (RAC) by incorporating nanosilica (NS) and natural fibers (NF), specifically sisal fiber (SF) and palm fiber (PF). This novel combination aims to overcome the inherent limitations of RAC, such as reduced strength and durability, while promoting sustainability in construction. The research focuses on evaluating the mechanical properties of RAC, including compressive and flexural strengths, through the integration of NS and NF.
View Article and Find Full Text PDFSaudi Pharm J
December 2024
Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
Itraconazole (ITZ) is a highly effective antifungal agent. However, its oral application is associated with systemic toxicity and poor topical use. The present study aims to improve the antifungal activity of ITZ by loading it into bioadhesive niosomes.
View Article and Find Full Text PDFInt J Pharm X
December 2024
Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK.
This paper presents a comprehensive investigation of the manufacturing of itraconazole (ITZ) amorphous solid dispersions (ASDs) with Kolllidon® VA64 (KVA64) using hot-melt extrusion (HME) and in-line process monitoring, employing a Quality by Design (QbD) approach. A sequential Design of Experiments (DoE) strategy was utilized to optimize the manufacturing process, with in-line UV-Vis spectroscopy providing real-time monitoring. The first DoE used a fractional factorial screening design to evaluate critical process parameters (CPPs), revealing that ITZ concentration had the most significant impact on the product quality attributes.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China.
Understanding the enhancing mechanisms of graphene oxide (GO) on the pore structure characteristics in the interfacial transition zone (ITZ) plays a crucial role in cemented waste rock backfill (CWRB) nanoreinforcement. In the present work, an innovative method based on metal intrusion techniques, backscattered electron (BSE) images, and deep learning is proposed to analyze the micro/nanoscale characteristics of microstructures in the GO-enhanced ITZ. The results showed that the addition of GO reduced the interpore connectivity and the porosity at different pore throats by 53.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!