Novel organic cation transporter 2 (OCTN2, SLC22A5) is responsible for the uptake of carnitine through the intestine and, therefore, might be a promising molecular target for designing oral prodrugs. Poor permeability and rapid metabolism have greatly restricted the oral absorption of gemcitabine. We here describe the design of intestinal OCTN2-targeting prodrugs of gemcitabine by covalent coupling of l-carnitine to its N4-amino group via different lipophilic linkages. Because of the high OCTN2 affinity, the hexane diacid-linked prodrug demonstrated significantly improved stability (3-fold), cellular permeability (15-fold), and oral bioavailability (5-fold), while causing no toxicity as compared to gemcitabine. In addition, OCTN2-targeting prodrugs can simultaneously improve the permeability, solubility, and metabolic stability of gemcitabine. In summary, we present the first evidence that OCTN2 can act as a new molecular target for oral prodrug delivery and, importantly, the linkage carbon chain length is a key factor in modifying the affinity of the substrate for OCTN2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.7b00049 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!