Spin polarisation of ultrashort spin current pulses injected in semiconductors.

J Phys Condens Matter

Institute of Solid State Physics, Vienna University of Technology, Vienna, Austria.

Published: May 2017

Ultrashort spin current pulses have great potential to become carriers of information in future ultrafast spintronics. They present the outstanding property of an extremely compressed time profile, which can allow for the building up of spintronics operating at the unprecedented THz frequencies. The ultrashort spin pulses, however, still lack other desirable features. For instance the spatial profile resembles more that of a spill rather than that of a spatially compressed pulse. Moreover the ultrashort spin current pulses can travel only across small distances in metals. The injection of the ultrashort spin pulses from the metallic ferromagnet, where they have to be generated, into a semiconductor is proposed as the first step to overcome both issues by allowing the excited electrons to propagate in a medium with few scatterings. However designing efficient interfaces for the injection is challenging due to practical constraints like chemical and structural stability. This work therefore expands the study of injection to a broader range of interfaces, and analyses how different metallic layers and semiconductors influence the amplitude, the spin polarisation and duration of the ultrashort pulses. This provides guidelines for the selection of efficient interfaces and, equally importantly, experimentally testable trends.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/aa62deDOI Listing

Publication Analysis

Top Keywords

ultrashort spin
20
spin current
12
current pulses
12
spin polarisation
8
spin pulses
8
efficient interfaces
8
spin
7
ultrashort
6
pulses
6
polarisation ultrashort
4

Similar Publications

Aims: The aim of this study was to develop an ultra-short echo time 3D magnetic resonance imaging (MRI) method for imaging subacute myocardial infarction (MI) quantitatively and in an accelerated way. Here, we present novel 3D T- and T -weighted Multi-Band SWeep Imaging with Fourier Transform and Compressed Sensing (MB-SWIFT-CS) imaging of subacute MI in mice hearts .

Methods And Results: Relaxation time-weighted and under-sampled 3D MB-SWIFT-CS MRI were tested with manganese chloride (MnCl) phantom and mice MI model.

View Article and Find Full Text PDF

Ultrafast Laser-Induced Spin Dynamics in All-Semiconductor Ferromagnetic CrSBr-Phosphorene Heterostructures.

J Phys Chem Lett

January 2025

School of Physics, State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China.

Ultrashort laser pulses are extensively used for efficient manipulation of interfacial spin injection in two-dimensional van der Waals (vdW) heterostructures. However, physical processes accompanying the photoinduced spin transfer dynamics on the all-semiconductor ferromagnetic vdW heterostructure remain largely unexplored. Here, we present a computational investigation of the femtosecond laser pulse induced purely electron-mediated spin transfer dynamics at a time scale of less than 50 fs in a vdW heterostructure.

View Article and Find Full Text PDF

Non-Resonant Magnetic X-ray Scattering as a Probe of Ultrafast Molecular Spin-State Dynamics: An Ab Initio Theory.

J Chem Theory Comput

January 2025

State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China.

Article Synopsis
  • Advanced techniques like high harmonic generation and X-ray free-electron lasers have enabled the study of ultrafast electron and spin dynamics on extremely short timescales.
  • The authors propose using magnetic X-ray scattering (MXS) to measure molecular spin-state dynamics and outline a protocol for simulating MXS patterns using multiconfigurational quantum chemistry.
  • The method is validated through simulations of spin-flip dynamics in the TiCl molecule, showcasing MXS's ability to detect real-time spin-state changes and infer spatial characteristics of spin density from diffraction patterns.
View Article and Find Full Text PDF

Osteochondral Abnormalities on Three-Dimensional Ultrashort Echo Time MRI Scans Are Associated with Knee Cartilage Degradation.

Radiology

December 2024

From the Department of Radiology, Hanyang University Hospital, 222-1 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea (Sunmin Lee, Y.J.K., Seunghun Lee); Department of Radiology, Hanyang University Guri Hospital, Guri, South Korea (J.R.); Department of Radiology, Eunpyeong St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea (H.Y.L.); Department of Radiology, University of California, Davis, Sacramento, Calif (H.J.); Biostatistics Laboratory, Medical Research Collaborating Center, Industry-University Cooperation Foundation, Hanyang University, Seoul, South Korea (H.W.T., J.K.); and Department of Pre-Medicine, College of Medicine, Hanyang University, Seoul, South Korea (J.K.).

Background The calcified cartilage layer and subchondral bone plate (SBP) contribute to osteoarthritis development. Three-dimensional (3D) ultrashort echo-time (UTE) MRI can help to evaluate calcified cartilage and SBP in various stages of cartilage degradation. Purpose To compare calcified cartilage and SBP abnormalities using 3D UTE MRI with cartilage degradation and osteochondral junction (OCJ) abnormalities observed at proton-density fast spin-echo with fat suppression (PDFS) MRI.

View Article and Find Full Text PDF

Ag(i) emitters with ultrafast spin-flip dynamics for high-efficiency electroluminescence.

Chem Sci

January 2025

College of Chemistry and Molecular Sciences, Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Wuhan University Wuhan 430072 China

Carbene-metal-amide (CMA) complexes are appealing emitters for organic light-emitting diodes (OLEDs). However, little is known about silver(i)-CMA complexes, particularly electroluminescent ones. Here we report a series of Ag(i)-CMA complexes prepared using benzothiophene-fused carbazole derivatives as amide ligands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!