Bacteria and microalgae often coexist during the recycling of microalgal bioresources in wastewater treatment processes. Although the bacteria may compete with the microalgae for nutrients, they could also facilitate microalgal harvesting by forming algal-bacterial aggregates. However, very little is known about interspecies interactions between bacteria and microalgae. In this study, we investigated the responses of a model microalga, Chlorophyta sp., to the typical quorum sensing (QS) molecules N-acylhomoserine lactones (AHLs) extracted from activated sludge bacteria. Chlorophyta sp. self-aggregated in 200 μm bioflocs by secreting 460-1000 kDa aromatic proteins upon interacting with AHLs, and the settling efficiency of Chlorophyta sp. reached as high as 41%. However, Chlorophyta sp. cells were essentially in a free suspension in the absence of AHLs. Fluorescence intensity of the aromatic proteins had significant (P < 0.05) relationship with the Chlorophyta sp. settleability, and showed a positive correlation, indicating that aromatic proteins helped aggregate microalga. Transcriptome results further revealed up-regulation of synthesis pathways for aromatic proteins from tyrosine and phenylalanine that was assisted by anthranilate accumulation. To the best of our knowledge, this is the first study to confirm that eukaryotic microorganisms can sense and respond to prokaryotic QS molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.7b00355 | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India.
The aggregation of proteins, peptides and amino acids has been a keen subject of interest owing to their implications in metabolic disorders. In this work, we investigated the self-aggregation of the unmodified aromatic amino acid l-tryptophan (Trp) into unusual spherical microstructures. Using fluorescence spectroscopy and field emission scanning electron microscopy (FE-SEM), we detail the time-dependent transformation of monomeric tryptophan into spherical aggregates with distinct fluorescence characteristics (λ = 345 nm, λ = 430 nm) compared to the monomer.
View Article and Find Full Text PDFInflammopharmacology
January 2025
Department of Community Medicine, Vidhyadeep Homoeopathic Medical College and Research Centre, Vidhyadeep University, Anita, Surat, Gujarat, 394110, India.
Volatile oils (VOs), synonymously termed essential oils (EOs), are highly hydrophobic liquids obtained from aromatic plants, containing diverse organic compounds for example terpenes and terpenoids. These oils exhibit significant neuroprotective properties, containing antioxidant, anti-inflammatory, anti-apoptotic, glutamate activation, cholinesterase inhibitory action, and anti-protein aggregatory action, making them potential therapeutic agents in managing neurodegenerative diseases (NDs). VOs regulate glutamate activation, enhance synaptic plasticity, and inhibit oxidative stress through the stimulation of antioxidant enzymes.
View Article and Find Full Text PDFEnviron Technol
January 2025
College of Architecture & Civil Engineering, Beijing University of Technology, Beijing, People's Republic of China.
The release of algal organic matter (AOM) during seasonal algal blooms increases the complexity and heterogeneity of natural organic matter (NOM) in water sources, altering its hydrophilic-hydrophobic balance and posing significant challenges to conventional water treatment processes. This study aims to verify whether the (Granular activated carbon) GAC selected for the adsorption of NOM in sand filtration effluent can adapt to water quality fluctuations caused by AOM release, and identify the criteria influencing GAC adsorption performance. Results indicated that external surface area, mesopore volume, pore size and surface functional groups were key indicators of GAC adsorption performance.
View Article and Find Full Text PDFRev Physiol Biochem Pharmacol
January 2025
Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
Multiple epigenetic modulations occur to chromatin rather than to DNA itself and these influence gene expression or gene silencing profoundly. Both the creation of these post-translational modifications and the mechanisms of their readout are regulated significantly by electrical forces several of which are discussed. They are also influenced by phase separation which itself is driven by electrical forces.
View Article and Find Full Text PDFSci Rep
January 2025
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!