The present study is aimed at the development of inhibition ELISA (I-ELISA) exploring monoclonal antibodies (MAbs) and recombinant invariant surface glycoprotein. The extracellular domain (ED) of invariant surface glycoprotein (ISG-75) from Trypanosoma evasni has been heterologously expressed in Pichia pastoris (X-33). The recombinant ISG-75 (rISG-75ED) was characterized by immunoblot and ELISA, followed by the production of MAbs against rISG-75ED. The MAbs were characterized by immunoblot and then explored in the development of I-ELISA for the detection of surra. The diagnostic potential of the developed test has been evaluated using 1192 field sera sample including cattle, buffalo, donkey, horse and camel. The statistical analysis of the data showed optimum combination of diagnostic sensitivity and specificity at 98.8% and 99.2% respectively, with cut-off percentage inhibition (PI) value of >45. The Cohen's kappa coefficient of agreement was found to be 0.98. Hence, the diagnostic test developed in the present study can be exploited as a potential and reliable tool in the serodiagnosis and surveillance of surra in animals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biologicals.2017.02.004DOI Listing

Publication Analysis

Top Keywords

invariant surface
12
surface glycoprotein
12
recombinant invariant
8
monoclonal antibodies
8
surveillance surra
8
surra animals
8
characterized immunoblot
8
inhibition enzyme
4
enzyme immuno
4
immuno assay
4

Similar Publications

Objects project different images when viewed from varying locations, but the visual system can correct perspective distortions and identify objects across viewpoints. This study investigated the conditions under which the visual system allocates computational resources to construct view-invariant, extraretinal representations, focusing on planar symmetry. When a symmetrical pattern lies on a plane, its symmetry in the retinal image is degraded by perspective.

View Article and Find Full Text PDF

Structure-guided engineering of a mutation-tolerant inhibitor peptide against variable SARS-CoV-2 spikes.

Proc Natl Acad Sci U S A

January 2025

Cellular and Structural Physiology Laboratory, Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo 113-8510, Japan.

Pathogen mutations present an inevitable and challenging problem for therapeutics and the development of mutation-tolerant anti-infective drugs to strengthen global health and combat evolving pathogens is urgently needed. While spike proteins on viral surfaces are attractive targets for preventing viral entry, they mutate frequently, making it difficult to develop effective therapeutics. Here, we used a structure-guided strategy to engineer an inhibitor peptide against the SARS-CoV-2 spike, called CeSPIACE, with mutation-tolerant and potent binding ability against all variants to enhance affinity for the invariant architecture of the receptor-binding domain (RBD).

View Article and Find Full Text PDF

New Algorithms to Generate Permutationally Invariant Polynomials and Fundamental Invariants for Potential Energy Surface Fitting.

J Chem Theory Comput

January 2025

State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, People's Republic of China.

Symmetric functions, such as Permutationally Invariant Polynomials (PIPs) and Fundamental Invariants (FIs), are effective and concise descriptors for incorporating permutation symmetry into neural network (NN) potential energy surface (PES) fitting. The traditional algorithm for generating such symmetric polynomials has a factorial time complexity of , where is the number of identical atoms, posing a significant challenge to applying symmetric polynomials as descriptors of NN PESs for larger systems, particularly with more than 10 atoms. Herein, we report a new algorithm which has only linear time complexity for identical atoms.

View Article and Find Full Text PDF

Zintl compounds have garnered research interest due to their diverse technological applications. Utilizing first-principles calculations, we performed a systematic study of ABX (A = Li, Na, K, Rb, or Cs; B = Si, Ge, Sn, or Pb; and X = P, As, Sb, or Bi) Zintl materials with the 6 KSnSb-type structure. Notably, six ABX Zintl compounds (RbSiBi, CsSiBi, LiGeBi, KGeBi, RbGeBi, and CsGeBi) were found to have topologically nontrivial phases, as demonstrated by the invariant computed using the hybrid functional HSE06.

View Article and Find Full Text PDF

Myoelectric control has emerged as a promising approach for a wide range of applications, including controlling limb prosthetics, teleoperating robots and enabling immersive interactions in the Metaverse. However, the accuracy and robustness of myoelectric control systems are often affected by various factors, including muscle fatigue, perspiration, drifts in electrode positions and changes in arm position. The latter has received less attention despite its significant impact on signal quality and decoding accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!