Construction of Light-Harvesting Polymeric Vesicles in Aqueous Solution with Spatially Separated Donors and Acceptors.

Macromol Rapid Commun

School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.

Published: July 2017

This communication describes polymer vesicles self-assembled from hyperbranched polymers (branched polymersomes (BPs)) as scaffolds, conceptually mimicking the natural light-harvesting system in aqueous solution. The system is constructed with hydrophobic 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl) as donors encapsulated in the hydrophobic hyperbranched cores of the vesicles and the hydrophilic Rhodamine B (RB) as acceptors incorporated on the surface of the vesicles through the cyclodextrin (CD)/RB host-guest interactions, through which the donors and acceptors are spatially separated to effectively avoid the self-quenching between donors. This vesicular light harvesting system has presented good energy transfer efficiency of about 80% in water, and can be used as the ink to write multiclolor letters. In addition, due to the giant dimension of BPs, the real-time fluorescent images of the vesicles under an optical microscope can be observed to prove the light-harvesting process. It is supposed that such a vesicular light-harvesting antenna can be used to construct artificial photosynthesis systems in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.201600818DOI Listing

Publication Analysis

Top Keywords

aqueous solution
8
spatially separated
8
donors acceptors
8
vesicles
5
construction light-harvesting
4
light-harvesting polymeric
4
polymeric vesicles
4
vesicles aqueous
4
solution spatially
4
donors
4

Similar Publications

Understanding the interfacial interaction mechanisms between oil and minerals is of vital importance in the applications of petroleum production and environmental protection. In this work, the interactions of dodecane with mica and calcite in aqueous media were investigated by using the drop probe technique based on atomic force microscopy. For the dodecane-mica interactions, the electrical double layer (EDL) repulsion dominated in 10 mM NaCl solution, and a higher pH facilitated the detachment of dodecane.

View Article and Find Full Text PDF

Anion-π Interactions on Functionalized Porous Aromatic Cages for Gold Recovery from Complex Aqueous with High Capacity.

Angew Chem Int Ed Engl

January 2025

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Chemistry, Renmin Street, 130024, Changchun, CHINA.

High capacity, selective recovery and separation of precious metals from complex aqueous solutions is essential but remains a challenge in practical applications. Here, we prepared a thiophene-modified aromatic porous organic cage (T-PAC) with high stability for precise recognition and recovery of gold. T-PAC exhibits an outstanding gold uptake capacity of up to 2260 mg/g with fast adsorption kinetics and high adsorption selectivity.

View Article and Find Full Text PDF

1,4-Dihydroxyanthraquinone (1,4-DHAQ, a fluorophore) doped carbon nanotubes@cellulose (1,4-DHAQ-doped CNTs@CL) nanofibrous membranes have been prepared electrospinning and subsequent deacetylation in this work. They have been successfully applied for highly sensitive detection of Cu in aqueous solution. The surface area per unit mass (S/M) ratio of the nanofibrous membranes was enhanced by incorporating the CNTs into cellulose.

View Article and Find Full Text PDF

The regulation of artificial interphase for advanced Zn anode is an effective solution to achieve superior electrochemical performance for aqueous batteries. However, the deployment of atomically precise architectures and ligand engineering to achieve functionalization-oriented regulatory screening is lacking, which is hindered by higher requirements for synthetic chemistry and structural chemistry. Herein, we have first performed ligand engineering which selected zinc ion trapping ligands (-CH3) based on the coordination effect, and zinc substrate binding ligands (-N=N-xC6H5) based on the electrostatic interaction.

View Article and Find Full Text PDF

Unlabelled: The presence of bromate in water poses a significant health risk. In order to effectively eliminate bromate from water, this study synthesized a series of ternary Zn-Ni-Al layered double hydroxides with varying Zn/Ni/Al atomic ratios using a co-precipitation method. The adsorbents were characterized using various techniques including XRD, Fourier transform infrared spectroscopy, and N adsorption-desorption isotherms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!