Lipoprotein (a) and coronary heart disease - is there an efficient secondary prevention?

Clin Res Cardiol Suppl

Clinic for Cardiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Georgstr. 11, 32545, Bad Oeynhausen, Germany.

Published: March 2017

Lipoprotein (a) (Lp (a)) is one risk factor for the development of cardiovascular diseases. Several studies have shown that Lp (a) hyperlipoproteinaemia has a particular influence on the development of coronary heart disease (CHD). A retrospective single-centre observation study was performed to evaluate the effectiveness of lipid apheresis on the basis of consecutively performed percutaneous coronary interventions (PCI) in patients with high Lp (a) values and angiographically documented CHD.In 23 pts (male 18, age 60.04 ± 0.58 years) with angiographically documented CHD (first manifestation 48.00 ± 9.41 years), elevated LDL cholesterol (144.39 ± 92.01 mg/dl) and Lp (a) (133.04 ± 39.68 mg/dl), 49 PCI and 3 coronary artery bypass grafting (CABG) procedures had been performed prior to the initiation of lipid apheresis. Following the initiation of weekly lipid apheresis, LDL cholesterol was 99.43 ± 36.53 mg/dl and Lp (a) 91.13 ± 33.02 mg/dl. In a time interval of 59.87 ± 49.49 months (median 51.00, range 1-153 months) 15 pts did not require an additional PCI. In 8 pts (7 pts 3‑vessel disease, 1 pt 2‑vessel disease) 14 PCI - no CABG - were performed after 69.38 ± 71.67 months (median: 32.50, range 17-232 months). The incidence of PCI could thus be reduced by 71.43%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5352755PMC
http://dx.doi.org/10.1007/s11789-017-0088-xDOI Listing

Publication Analysis

Top Keywords

lipid apheresis
12
coronary heart
8
heart disease
8
angiographically documented
8
ldl cholesterol
8
lp a
5
lipoprotein a coronary
4
disease
4
disease efficient
4
efficient secondary
4

Similar Publications

Metabolic Dysfunction Associated-Steatotic Liver Disease (MASLD) and Cardiovascular Risk: Embrace All Facets of the Disease.

Curr Cardiol Rep

January 2025

Third Department of Medicine, General University Hospital and First Faculty of Medicine, Charles University, 121 08, Prague, Czech Republic.

Purpose Of Review: In recent years, the terms "metabolic associated fatty liver disease-MAFLD" and "metabolic dysfunction-associated steatotic liver disease-MASLD" were introduced to improve the encapsulation of metabolic dysregulation in this patient population, as well as to avoid the negative/stigmatizing terms "non-alcoholic" and "fatty".

Recent Findings: There is evidence suggesting links between MASLD and coronary heart disease (CHD), heart failure (HF), atrial fibrillation (AF), stroke, peripheral artery disease (PAD) and chronic kidney disease (CKD), although the data for HF, AF, stroke and PAD are scarcer. Physicians should consider the associations between MASLD and CV diseases in their daily practice.

View Article and Find Full Text PDF

Lipoprotein(a) and Atrial Fibrillation: Mechanistic Insights and Therapeutic Approaches.

Int J Med Sci

January 2025

Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, People's Republic of China.

Elevated lipoprotein(a) [Lp(a)] levels are increasingly recognized as a significant risk factor for cardiovascular diseases and may also contribute to atrial fibrillation (AF). This review investigated the indirect mechanisms through which Lp(a) may influence AF, including proatherogenic, prothrombotic, and proinflammatory pathways. Traditional lipid-lowering therapies, such as lifestyle modifications and statins, have limited effects on Lp(a) levels.

View Article and Find Full Text PDF

Oxidative modifications of lipoproteins play a crucial role in the initiation of atherosclerotic cardiovascular diseases (ASCVDs). Nowadays, the one effective strategy for the treatment of patients with hyperlipoproteinemia(a) is lipoprotein apheresis (LA), which has a pleiotropic effect on reducing the risk of ASCVDs. The significance of oxidative susceptibility of the LDL fraction in ASCVDs has been extensively studied.

View Article and Find Full Text PDF

Homozygous Familial Hypercholesterolemia Treatment: New Developments.

Curr Atheroscler Rep

January 2025

Carbohydrate and Lipid Metabolism Research Unit, Department of Medicine, University of the Witwatersrand, Johannesburg, South Africa.

Purpose Of Review: Homozygous familial hypercholesterolaemia (HoFH) is characterized by marked elevation of low-density lipoprotein cholesterol (LDLC) and premature atherosclerotic cardiovascular disease. This is a review of novel pharmacological therapies to lower LDLC in patients with HoFH.

Recent Findings: Novel therapies can be broadly divided by whether their efficacy is dependent or independent of residual low-density lipoprotein receptor (LDLR) function.

View Article and Find Full Text PDF

Coagulation in familial hypercholesterolemic patients: effect of current hypolipidemic treatment and anticoagulants.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.

Familial hypercholesterolemia (FH) is a relatively rare genetic disease associated with high serum cholesterol levels but also with abnormalities in blood coagulation. Novel pharmacotherapeutic approaches in FH including proprotein convertase subtilisin/kexin type 9 antibodies (PCSK9Ab) are very efficient in decreasing cholesterol levels but their impact on coagulation in FH is not yet established. Therefore, we hypothesized that these novel antidyslipidemic drugs can positively impact blood coagulation due to their more potent effect on cholesterol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!