The role of macrophages in skin homeostasis.

Pflugers Arch

Department of Dermatology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8059, USA.

Published: April 2017

The skin and its appendages comprise the largest and fastest growing organ in the body. It performs multiple tasks and maintains homeostatic control, including the regulation of body temperature and protection from desiccation and from pathogen invasion. The skin can perform its functions with the assistance of different immune cell populations. Monocyte-derived cells are imperative for the completion of these tasks. The comprehensive role of macrophages and Langerhans cells in establishing and maintaining skin homeostasis remains incompletely defined. However, over the past decade, innovations in mouse genetics have allowed for advancements in the field. In this review, we explore different homeostatic roles of macrophages and Langerhans cells, including wound repair, follicle regeneration, salt balance, and cancer regression and progression in the skin. The understanding of the precise functions of myeloid-derived cells in the skin under basal conditions can help develop specific therapies that aid in skin and hair follicle regeneration and cutaneous cancer prevention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5663320PMC
http://dx.doi.org/10.1007/s00424-017-1953-7DOI Listing

Publication Analysis

Top Keywords

role macrophages
8
skin homeostasis
8
macrophages langerhans
8
langerhans cells
8
follicle regeneration
8
skin
7
macrophages skin
4
homeostasis skin
4
skin appendages
4
appendages comprise
4

Similar Publications

Comprehensive Analysis Reveals the Potential Diagnostic Value of Biomarkers Associated With Aging and Circadian Rhythm in Knee Osteoarthritis.

Orthop Surg

January 2025

Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China.

Objective: Knee osteoarthritis (KOA) is characterized by structural changes. Aging is a major risk factor for KOA. Therefore, the objective of this study was to examine the role of genes related to aging and circadian rhythms in KOA.

View Article and Find Full Text PDF

Gastric cancer is the fifth most common cancer and the fourth leading cause of cancer-related deaths worldwide, accounting for nearly 800,000 fatalities annually. ITGAX (Integrin alpha X) is closely associated with immune cells, such as macrophages and dendritic cells. Its involvement in gastric cancer was identified through an analysis of The Gene Expression Omnibus (GEO) database, which highlighted as one of four key gastric cancer-related genes.

View Article and Find Full Text PDF

Increasing evidence has shown that physical exercise remarkably inhibits oncogenesis and progression of numerous cancers and exercise-responsive microRNAs (miRNAs) exert a marked role in exercise-mediated tumor suppression. In this research, expression and prognostic values of exercise-responsive miRNAs were examined in breast cancer (BRCA) and further pan-cancer types. In addition, multiple independent public and in-house cohorts, in vitro assays involving multiple, macrophages, fibroblasts, and tumor cells, and in vivo models were utilized to uncover the tumor-suppressive roles of miR-29a-3p in cancers.

View Article and Find Full Text PDF

Background: The common occurrence of atrial fibrillation (AF) as a cardiac arrhythmia, along with its link to sleep deprivation (SD), is gaining more acknowledgment. Even with progress in comprehending the development of AF, the molecular connections between SD and AF are still not well-defined. The objective of this research was to pinpoint the shared molecular routes responsible for SD-induced AF and investigate possible treatment targets.

View Article and Find Full Text PDF

inhibits -induced inflammatory response through targeting HMGB1 in mouse primary peritoneal macrophages.

Heliyon

January 2025

Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.

Background: () is one of the most common pathogens associated with deep fungal infection, which represents a serious threat to human health. Although high mobility group box 1 (HMGB1) plays a key role in infection, its mechanism is unclear. We aimed to explore the regulation of small-molecule non-coding RNA (miRNA) for HMGB1 in infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!