RNA-binding proteins (RBPs) have emerged as important regulators of invertebrate adult stem cells, but their activities remain poorly appreciated in mammals. Using a short hairpin RNA strategy, we demonstrate here that the 2 mammalian RBPs, PUMILIO (PUM)1 and PUM2, members of the PUF family of posttranscriptional regulators, are essential for hematopoietic stem/progenitor cell (HSPC) proliferation and survival in vitro and in vivo upon reconstitution assays. Moreover, we found that PUM1/2 sustain myeloid leukemic cell growth. Through a proteomic approach, we identified the FOXP1 transcription factor as a new target of PUM1/2. Contrary to its canonical repressive activity, PUM1/2 rather promote FOXP1 expression by a direct binding to 2 canonical PUM responsive elements present in the FOXP1-3' untranslated region (UTR). Expression of FOXP1 strongly correlates with PUM1 and PUM2 levels in primary HSPCs and myeloid leukemia cells. We demonstrate that FOXP1 by itself supports HSPC and leukemic cell growth, thus mimicking PUM activities. Mechanistically, FOXP1 represses the expression of the p21 and p27 cell cycle inhibitors. Enforced FOXP1 expression reverses shPUM antiproliferative and proapoptotic activities. Altogether, our results reveal a novel regulatory pathway, underscoring a previously unknown and interconnected key role of PUM1/2 and FOXP1 in regulating normal HSPC and leukemic cell growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429137 | PMC |
http://dx.doi.org/10.1182/blood-2016-10-747436 | DOI Listing |
Inversion of chromosome 16 [inv(16)] is one of the most common chromosomal rearrangements in Acute Myeloid Leukemia (AML) and generates the fusion gene , which initiates leukemogenesis. Patients with inv(16) at diagnosis invariably have the rearrangement at relapse, leading to the assumption that is required after leukemic transformation. However, this has yet to be shown experimentally.
View Article and Find Full Text PDFSTAT5B is a vital transcription factor for lymphocytes. Here, function of two STAT5B mutations from human T cell leukemias: one substituting tyrosine 665 with phenylalanine (STAT5B ), the other with histidine (STAT5B ) was interrogated. modeling predicted divergent energetic effects on homodimerization with a range of pathogenicity.
View Article and Find Full Text PDFBiotechnol Bioeng
January 2025
Chair of Technical Biochemistry, Technische Universität Dresden, Dresden, Saxony, Germany.
Ikarugamycin is a member of the natural product family of the polycyclic tetramate macrolactams (PoTeMs). The compound exhibits a diverse range of biological activities, including antimicrobial, antiprotozoal, anti-leukemic, and anti-inflammatory properties. In addition, it interferes with several crucial cellular functions, such as oxidized low-density lipoprotein uptake in macrophages, Nef-induced CD4 cell surface downregulation, and mechanisms of endocytosis.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France.
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of neoplastic CD5/CD19 B lymphocytes in the blood. These cells migrate to and proliferate in the bone marrow and lymphoid tissues. Despite the development of new therapies for CLL, drug resistance and disease relapse still occur; novel treatment approaches are therefore still needed.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy.
Genetic studies of haematological cancers have pointed out the heterogeneity of leukaemia in its different subpopulations, with distinct mutations and characteristics, impacting the treatment response. Next-generation sequencing (NGS) and genome-wide analyses, as well as single-cell technologies, have offered unprecedented insights into the clonal heterogeneity within the same tumour. A key component of this heterogeneity that remains unexplored is the intracellular metabolome, a dynamic network that determines cell functions, signalling, epigenome regulation, immunity and inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!