Aberrant expression of Fos-related antigen-1 (Fra1) is commonly elevated in various malignant cancers and is strongly implicated in invasion and metastasis. However, the molecular mechanisms underlying its dysregulation in human glioma remain poorly understood. In the present study, we demonstrate that up-regulation of Fra1 plays a crucial role in the glioma aggressiveness and epithelial-mesenchymal transition (EMT) activated by Wnt/β-catenin signal pathway. In glioma cells, activation of Wnt/β-catenin signalling by Wnt3a administration obviously induced EMT and directly activated the transcription of Fra1. Phenotype experiments revealed that up-regulation of Fra1 induced by Wnt/β-catenin signalling drove the EMT of glioma cells. Furthermore, it was found that the cisplatin resistance acquired by Wnt/β-catenin signalling activation depended on increased expression of Fra1. Analysis of clinical specimens verified a positive correlation between Fra1 and β-catenin as well as a poor prognosis in glioma patients with double-high expressions of them. These findings indicate that an aberrant Wnt/β-catenin signalling leads to the EMT and drug resistance of glioma via Fra1 induction, which suggests novel therapeutic strategies for the malignant disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5469333 | PMC |
http://dx.doi.org/10.1042/BSR20160643 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!